Potensi Dan Cabaran Kecerdasan Buatan (AI) dalam Bidang Bahasa Melayu
DOI:
https://doi.org/10.37134/pendeta.vol15.2.8.2024Keywords:
kecerdasan buatan, bahasa Melayu, inovasi linguistik, pemprosesan bahasa semula jadi, personalisasi pembelajaranAbstract
Kecerdasan Buatan (AI) telah menjadi topik perbincangan utama dalam dunia teknologi moden kini kerana AI menjanjikan kemajuan yang signifikan dalam pelbagai bidang, termasuk bidang bahasa. Dalam konteks bahasa Melayu, AI mempunyai potensi yang besar untuk memperkaya penggunaan bahasa Melayu dan mengubah cara interaksi sosial serta budaya masyarakat kini. Teknologi AI telah menghasilkan projek inovatif untuk memperbaiki komunikasi silang budaya yang memberi inovasi linguistik dalam bahasa Melayu. Dengan itu, AI mampu mewujudkan dimensi baharu dalam pemahaman linguistik, komunikasi, dan pertukaran budaya, khususnya dalam bahasa Melayu. Objektif kajian ini adalah unutk mengenal pasti potensi Al dalam memperkaya dan memperluas penggunaan bahasa Melayu. Selain itu, artikel ini akan mengenal pasti cabaran yang dihadapi dalam memanfaatkan AI dalam konteks bahasa Melayu, seperti kekurangan data yang berkualiti dan jurang teknologi di kawasan terpencil. Artikel yang dihasilkan dengan menggunakan pendekatan kualitatif dan pendekatan deskriptif ini membincangkan secara ringkas tentang potensi AI dalam bidang bahasa Melayu, termasuk Pemprosesan Bahasa Semula Jadi (NLP) dan personalisasi pembelajaran. Melalui artikel ini, pengkaji berharap agar dapat memberikan pemahaman yang lebih mendalam tentang potensi AI dalam memajukan bahasa Melayu dan memberikan pandangan yang jelas tentang arah penelitian dan pengembangan pada masa akan datang.
Downloads
References
Ashraf Alam. (2021). Possibilities and apprehensions in the landscape of artificial intelligence in education. 2021 International Conference on Computational Intelligenge and Computing Applications, 1-8. http://dx.doi.org/10.1109/ICCICA52458.2021.9697272
Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on oppurtunities, challenges, and future research recommendations of artificial intelligence in education. Computer and Education: Artifial Intelligence, 4, 100118. https://doi.org/10.1016/j.caeai.2022.100118.
Creswell, J. W. (2001). Educational research: planning, conducting, and evaluating quantitative and qualitative research. http://ci.nii.ac.jp/ncid/BB26859968
Huang, X., Zou, D., Cheng, G., Chen, X., & Xie, H. (2023). Trends, research issues and applications of artificial intelligence in language education. Educational Technology & Society, 26(1), 112-131. https://doi.org/10.30191/ETS.202301_26(1).0009
Irma Wani Othman, Mohd Maziz al-Hadi Moharam, Hamida Ambo, Siti Maizurah Abd. Salam, Mohd Khairi Lebai Ahmad, & Muhammad Safwan Yusoff. (2023). Enhancing the role of the Malay Language (MBM) in knowledge augmentation, practical application, skill development, and attitidinal growth. Journal of Tourism, Hospitality and Environment Management, 8(34), 113-142. https://gaexcellence.com/jthem/article/view/2551/2218
Jia, F., Sun, D., Ma, Q., & Looi, C.-K. (2022). Developing an AI-based learning system for L2 learners’ authentic and ubiquitous learning in English language. Sustainability, 14, 15527. https://doi.org/10.3390 /su142315527.
Larson, B. (2017). Gender as a variable in Natural-Language Processing: Ethical considerations. In Proceedings of the First ACL Workshop on Ethics in Natural Language Processing, Valencia, Spain. Association for Computational Linguistics. https://aclanthology.org/W17-1601
Lin, C. C., Huang, A. Y. Q., & Lu, O. H. T. (2023). Artificial intelligence in intelligent tutoring systems toward sustainable education: A systematic review. Smart Learning Environments, 10, 41. https://doi.org/10. 1186/s40561-023-00260-y.
Muhammad Khairul Ahmad, Nurul Munirah Azamri, Khamizatul Bazura Idris, & Airil Haimi Mohd Adnan. (2019). Education 4.0 technologies for English language teaching and learning in the Malaysia Context. Proceedings: International Invention, Innovative & Creative Conference. https://www.researchgate.net/publication/337146655_Education_40_Technologies_for_English_Language_Teaching_and_Learning_in_the_Malaysian_Context
Muhammad Fakhrur Razi Abu Bakar, Norisma Idris, Liyana Shuib, & Norazlina Khamis. (2020). Sentiment analysis of noisy Malay text: State of art, challenges and future work. IEEE Access, 8, 24687-24696. https://doi.org/10.1109/access.2020.2968955
Mukhlis Amien. (2023). Sejarah dan perkembangan teknik Natural Language Processing (NLP) bahasa Indonesia: Tinjauan tentang sejarah, perkembangan teknologi, dan aplikasi NLP dalam bahasa Indonesia. Cornell University. https://doi.org/10.48550/arXiv.2304.02746
Nandasara, S. T., Mikami, Y., Mohideen, A. I. C., & Tharangie, K. G. D. (2019). Automated language translation: Opportunities and impact on the society. International Journal of Computer Application, 178 (34), 41-50. https://www.researchgate.net/publication/334545441_Automated_Language_Translation_ Opportunities_and_Impact_on_the_Society
Noor Zuhidayah Muhd Zulkifli, Wan Muna Ruzanna Wan Mohamad, Shahlan Surat, & Jamaludin Badusah. (2019). Aspek budaya Melayu dalam pengajaran dan pembelajaran bahasa Melayu sebagai bahasa asing. PENDETA, 10, 121–133. https://doi.org/10.37134/pendeta.vol10.9.2019
Nurul Akhmal Mohd Zulkefli, Haslinda Hashim, Azniah Ismail, & Juraini Jamauddin. (2018). Effect of using virtual learning environment in teaching and learning Malay language. The International Journal of Multimedia & Its Applications, 10(6). 14-29. https://aircconline.com/ijma/V10N6/10618ijma02.pdf
Russel, S., & Norvig, P. (2020). Artificial intelligence: A modern approach (4th ed). Pearson Education.
Sahoo, C., Wankhade, M. & Singh, B. K. (2023). Sentiment analysis using deep learning techniques: A comprehensive review. International Journal of Multimedia Information Retrieval, 12(41). https://doi.org/10.1007/s13735-023-00308-2.
Saleha Omar, Juhaida Abu Bakar, Maslinda Mohd. Nadzir, Nor Hazlyna Harun, & Nooraini Yusoff. (2021). Text simplification for Malay corpus: A review. International Conference on Computer & Information Sciences, 345-350. https://doi.org/N 10.1109/ICCOINS49721.2021.9497167.
Schnabel, T., Bennett, P. N., & Joachims, T. (2018). Improving recommender systems beyond the algorithm. https://doi.org/10.48550/arXiv.1802.07578.
Sheikh, H., Prins, C., & Schrijvers, E. (2023). Artificial intelligence: Definition and background. In: Mission AI. Research for Policy. Springer, Cham. https://doi.org/10.1007/978-3-031-21448-6_2
Sidek Mohd Noah. (2002). Reka bentuk penyelidikan: Falsafah, teori dan praktis. UPM Press.
Srinivasa, K. G., Kurni, M., & Saritha, K. (2022). Harnessing the power of AI to education. In: Learning, teaching, and assessment methods for contemporary learners. Springer Nature. https://doi.org/10.1007/978-981-19-6734-4_13
Syed Abdul Basit Andrabi, & Abdul Wahid. (2021). A review of machine translation for South Asian low resource languages. Turkish Journal of Computer and Mathematics Education, 12(5), 1134-1147. https://turcomat.org/index.php/turkbilmat/article/view/1777
Tanveer, M., Hassan, S., & Bhaumik, A. (2020). Academic policy regarding sustainability and artificial intelligence (AI). Sustainability, 12(22), 9435. https://doi.org/10.3390/su12229435
Tian, Z., Sun, M., Liu, A., Sarkar, S., & Liu, J. (2024). Enhancing instructional quality: Leveraging computer-assisted textual analysis to generate in-depth insights from educational artifacts. https://doi.org/10.48550/arXiv.2403.03920
Triputra, S., & Atqiya, F. (2021). Implementation of Natural Language Processing in seller-bot for SMEs. Journal of Physics: Conference Series, 1764. https://iopscience.iop.org/article/10.1088/1742-6596/1764/1/012069/pdf
Wassink, A. B., Gansen, C., & Bartholomew, I. (2022). Uneven success: Automatic speech recognition and ethnicity-related dialects. Speech Communication, 140, 50-70. https://doi.org/10.1016/j.specom.2022 .03.009
Xiao, C. (2021). Comparison of differences between artificial intelligence translation and artificial translation. Journal of Physics: Conference Series, 1992(2), 022079. https://doi.org/10.1088/1742-6596/1992/2/022079
Zainaba Omar, Mahzan Arshad, & Norliza Jamaludin. (2020). Pengajaran dan pembelajaran berasaskan tugasan meningkatkan motivasi dan keyakinan bertutur bahasa Melayu dalam kalangan murid sekolah rendah. PENDETA, 11(1), 122–132. https://doi.org/10.37134/pendeta.vol11.1.9.2020
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Diana Jumadi, Nor Sahara Mesman, Nur Hidayah Rashidi, Patricia Ganing
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.