The Application of Pandan and Soybean Extracts on the Biosynthesis of Tin Oxide Nanoparticles

Authors

  • Irmaizatussyehdany Buniyamin NANO-SciTech Laboratory, Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam Selangor, Malaysia
  • Noor Asnida Asli NANO-SciTech Laboratory, Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam Selangor, Malaysia
  • Kelvin Alvin Eswar NANO-SciTech Laboratory, Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam Selangor, Malaysia
  • Syed Abdul Illah Alyahya Syed Abd Kadir Pusat Asasi Universiti Teknologi MARA Cawangan Selangor, Kampus Dengkil, Dengkil, Selangor, Malaysia
  • Ameran Saiman Engineering College, Universiti Teknologi MARA, Shah Alam Selangor, Malaysia
  • Mohd Yusri Idorus Institute Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh Selangor, Malaysia
  • Abd Razzif Abd Razak Lembaga Pemasaran Pertanian Persekutuan, Kementerian Pertanian dan Industri Makanan, Jalan Persiaran 1, Bandar Baru Selayang, Batu Caves, Selangor, Malaysia
  • Mohamad Rusop Mahmood NANO-SciTech Laboratory, Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam Selangor, Malaysia
  • Zuraida Khusaimi NANO-SciTech Laboratory, Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam Selangor, Malaysia

DOI:

https://doi.org/10.37134/jsml.vol12.2.6.2024

Keywords:

Tin oxide nanoparticles, biosynthesis, pandan, soybean

Abstract

Development of benign and efficient approaches towards the replacement of the conventional methods for producing SnO2 nanoparticles (SnO2 NPs) has begun in which a biosynthesis process has been introduced. This study utilizes biomolecules, specifically the flavonoids and carbohydrate groups in pandan and soybean extracts. The biosynthesized nanoparticles underwent characterization through relevant spectroscopies. Fourier transform infrared (FTIR) analysis revealed the absorption bands of SnO2 and Sn-O-Sn groups, with the complete disappearance of peaks associated with untreated pandan and soybean. X-ray Diffraction (XRD) indicated the formation of tetragonal structure in SnO2 NPs with primary peaks at 27o, 34o, and 51o. Additionally, UV-Visible diffuse reflectance spectroscopy (DRS) yielded band gap values of 4.86 and 3.45 eV for SnO2 NPs derived from pandan and soybean, respectively. In summary, the application of biosynthesized SnO2 NPs as a potential heterogeneous catalyst for purifying dye-polluted water through a photocatalytic process is highlighted.

Downloads

Download data is not yet available.

Author Biographies

Irmaizatussyehdany Buniyamin, NANO-SciTech Laboratory, Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam Selangor, Malaysia

Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

Noor Asnida Asli, NANO-SciTech Laboratory, Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam Selangor, Malaysia

Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

Kelvin Alvin Eswar, NANO-SciTech Laboratory, Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam Selangor, Malaysia

Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

Faculty of Applied Sciences, Universiti Teknologi MARA, Sabah Branch Tawau Campus, Tawau Sabah Malaysia

Mohamad Rusop Mahmood, NANO-SciTech Laboratory, Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam Selangor, Malaysia

NANO-ElecTronic Centre, Engineering College, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

Zuraida Khusaimi, NANO-SciTech Laboratory, Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam Selangor, Malaysia

Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

References

Ahmed S, Annu, Chaudhry SA, Ikram S. (2017). A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. Journal of Photochemistry and Photobiology B:Biology, 166,272-284. doi:https://doi.org/10.1016/j.jphotobiol.2016.12.011

Ayeshamariam A. (2013). Synthesis, structural and optical Characterizations of SnO2 Nanoparticles. Journal on Photonics and Spintronics, 2(2),4-8.

Ayeshamariam A, Ramalingam S, Bououdina M, Jayachandran M. (2014). Preparation and characterizations of SnO2 nanopowder and spectroscopic (FT-IR, FT-Raman, UV-Visible and NMR) analysis using HF and DFT calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 1135-1143. doi:https://doi.org/10.1016/j.saa.2013.09.030

Bhosale TT, Shinde HM, Gavade NL, Babar SB, Gawade VV, Sabale SR, Kamble RJ, Shirke BS, Garadkar KM. (2018). Biosynthesis of SnO2 nanoparticles by aqueous leaf extract of Calotropis gigantea for photocatalytic applications. Journal of Materials Science: Materials in Electronics, 29(8), 6826-6834. doi:10.1007/s10854-018-8669-0

Buniyamin I, Akhir RM, Asli NA, Khusaimi Z, Mahmood MR. (2021). Effect of calcination time on biosynthesised SnO2 nanoparticles using bioactive compound from leaves extract of Chromolaena Odorata. AIP Conference Proceedings, 2368(1). doi:10.1063/5.0057784

Buniyamin I, Akhir RM, Asli NA, Khusaimi Z, Rusop M. (2022). Green synthesis of tin oxide nanoparticles by using leaves extract of Chromolaena Odorata: The effect of different thermal calcination temperature to the energy band gap. Materials Today: Proceedings, 48, 1805-1809. doi: https://doi.org/10.1016/j.matpr.2021.09.117

Buniyamin I, Akhir RM, Nurfazianawatie MZ, Omar H, Malek NSA, Rostan NF, Eswar KA, Rosman NF, Abdullah MA, Ali NA, Khusaimi Z, Rusop M. (2023). Aquilaria malaccensis and Pandanus amaryllifolius mediated synthesis of tin oxide nanoparticles: The effect of the thermal calcination temperature. Materials Today: Proceedings. 2023/01/01/, 75,23-30. doi: https://doi.org/10.1016/j.matpr.2022.09.580

Buniyamin I, Akhir RM, Asli NA, Khusaimi Z, Rusop M. (2021). Biosynthesis of SnO2 nanoparticles by aqueous leaves extract of Aquilaria malaccensis (agarwood). IOP Conference Series: Materials Science and Engineering, 1092(1), 012070. doi:10.1088/1757-899X/1092/1/012070

Buniyamin I, Asli NA, Abd Halim MF, Khusaimi Z, Rusop M. (2023). Bio-synthesized tin oxide nanoparticles (SnO2 NPs) as a photocatalyst model. Malaysia Journal of Invention and Innovation (MJII). 2(3),1-5.

Buniyamin I, Eswar KA, Jalani KJ, Syed Abd Kadir SAIA, Mohammad M, Idorus MY, Asli NA, Rusop M, Khusaimi Z. (2023). Natural biomolecules in leaves and fruit extracts mediate the biosynthesis of SnO2 nanoparticles: A mini review. International Journal of Pharmaceuticals, Nutraceuticals and Cosmetic Science. 6(2), 24-40. doi:10.24191/IJPNaCS.v6i2.03

Buniyamin I, Khusaimi Z, Rusop M. (2023). Utilization of tin oxide nanoparticles synthesized through plant-mediated methods and their application in photocatalysis: A brief review. International Journal of Chemical and Biochemical Sciences. 24(7), 116-123.

Friedman M, Brandon DL. (2001). Nutritional and health benefits of soy proteins. Journal of Agricultural and Food Chemistry, 49(3), 1069-1086. doi:10.1021/jf0009246

Gawade VV, Gavade NL, Shinde HM, Babar SB, Kadam AN, Garadkar KM. (2017). Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. Journal of Materials Science: Materials in Electronics, 28(18), 14033-14039. doi:10.1007/s10854-017-7254-2

Gebre SH, Sendeku MG. (2019). New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview. SN Applied Sciences, 1(8), 928. doi:10.1007/s42452-019-0931-4

Gebreslassie YT, Gebretnsae HG. (2021). Green and cost-effective synthesis of tin oxide nanoparticles: A review on the synthesis methodologies, mechanism of formation, and their potential applications. Nanoscale Res Lett., 16(1),97. doi:10.1186/s11671-021-03555-6

Ghasemzadeh A, Jaafar HZ. (2013). Profiling of phenolic compounds and their antioxidant and anticancer activities in pandan (Pandanus amaryllifolius Roxb.) extracts from different locations of Malaysia. BMC Complement Altern Med., 341. doi:10.1186/1472-6882-13-341

Haritha E, Roopan SM, Madhavi G, Elango G, Al-Dhabi NA, Arasu MV. (2016). Green chemical approach towards the synthesis of SnO2 NPs in argument with photocatalytic degradation of diazo dye and its kinetic studies. Journal of Photochemistry and Photobiology B: Biology. 162, 441-447. doi:https://doi.org/10.1016/j.jphotobiol.2016.07.010

Jadhav DB, Kokate RD. (2020). Green synthesis of SnO2 using green papaya leaves for nanoelectronics (LPG sensing) application. Materials Today: Proceedings. 26, 998-1004. doi: https://doi.org/10.1016/j.matpr.2020.01.180

Karr-Lilienthal LK, Kadzere CT, Grieshop CM, Fahey GC. (2005). Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: A review. Livestock Production Science. 97(1), 1-12. doi: https://doi.org/10.1016/j.livprodsci.2005.01.015

Kavitha K, Rakshith D, Baker S, Kavitha HU, Yashwantha Rao HC, Harini BP, Satish S. (2013). Plants as green source towards synthesis of nanoparticles. International Research Journal of Biological Sciences. 2(6),66-76.

Kurniawan F, Rahmi R. (2017). Synthesis of SnO2 nanoparticles by high potential electrolysis. Bulletin of Chemical Reaction Engineering & Catalysis. 12, 281-286.

Liu X, Pan L, Chen T, Li J, Yu K, Sun Z, Sun C. (2013). Visible light photocatalytic degradation of methylene blue by SnO2 quantum dots prepared via microwave-assisted method. Catalysis Science & Technology. 3(7), 1805-1809. doi:10.1039/C3CY00013C

Lokuruka M. (2010). Soybean nutritional properties: The good and the bad about soy foods consumption- A review. African Journal of Food Agriculture Nutrition and Development. 10(4), 2439-2459.

Mohamed Zakaria M, Zaidan UH, Shamsi S, Abd Gani SS. (2020). Chemical composition of essential oils from leaf extract of pandan, Pandanus amaryllifolius ROXB. Malaysian Journal of Analytical Sciences. 24(1), 87-96.

Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky M, Kalinina NO. (2014). "Green" nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae., 6(1), 35-44.

Kumari MM, Philip D. (2015). Synthesis of biogenic SnO2 nanoparticles and evaluation of thermal, rheological, antibacterial and antioxidant activities. Powder Technology. 270, 312-319. doi: https://doi.org/10.1016/j.powtec.2014.10.034

Rovaris ÂA, Dias CO, da Cunha IP, Scaff RMC, de Fransisco A, Petkowicz CLO, Amante ER. (2012). Chemical composition of solid waste and effect of enzymatic oil extraction on the microstructure of soybean (Glycine max). Industrial Crops and Products. 36(1), 405-414. doi:https://doi.org/10.1016/j.indcrop.2011.10.001

Senthilkumar V, Senthil K, Vickraman P. (2012). Microstructural, electrical and optical properties of indium tin oxide (ITO) nanoparticles synthesized by co-precipitation method. Materials Research Bulletin, 47(4), 1051-1056. doi:https://doi.org/10.1016/j.materresbull.2011.12.040

Tammina SK, Mandal BK, Ranjan S, Dasgupta N. (2017). Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines. J Photochem Photobiol B. Jan, 166, 158-168. doi:10.1016/j.jphotobiol.2016.11.017

Thatsanasuwan N, Srichamnong W, Chupeerach C, Kriengsinyos W, Suttisansanee U. (2017). Antioxidant activities of Pandanus amaryllifolius leaves extracted under four designed extraction conditions. Food and Applied Bioscience Journal, 3(2), 130-136. doi:10.14456/fabj.2015.13

Vidhu VK, Philip D. (2015). Biogenic synthesis of SnO2 nanoparticles: Evaluation of antibacterial and antioxidant activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015/01/05/, 134,372-379. doi:https://doi.org/10.1016/j.saa.2014.06.131

Woumbo CY, Kuate D, Klang MJ, Womeni HM. (2021). Valorization of glycine max (Soybean) seed waste: optimization of the microwave-assisted extraction (MAE) and Characterization of polyphenols from soybean meal using response surface methodology (RSM). Journal of Chemistry. 2021, 4869909. doi:10.1155/2021/4869909

Yang Y, Wang Y, Yin S. (2017). Oxygen vacancies confined in SnO2 nanoparticles for desirable electronic structure and enhanced visible light photocatalytic activity. Applied Surface Science. 420, 399-406. doi:https://doi.org/10.1016/j.apsusc.2017.05.176

Downloads

Published

2024-05-15

How to Cite

Buniyamin, I., Asli, N. A., Eswar, K. A., Syed Abd Kadir, S. A. I. A., Saiman, A., Idorus, M. Y., Abd Razak, A. R., Mahmood, M. R., & Khusaimi, Z. (2024). The Application of Pandan and Soybean Extracts on the Biosynthesis of Tin Oxide Nanoparticles. Journal of Science and Mathematics Letters, 12(2), 83–92. https://doi.org/10.37134/jsml.vol12.2.6.2024

Issue

Section

Articles