Biosynthesis of Tin(IV) Oxide Nanoparticles (SnO2 NPs) via Chromolaena Odorata Leaves: The Influence of Heat on the Extraction Procedure
DOI:
https://doi.org/10.37134/jsml.vol12.2.11.2024Keywords:
Tin oxide nanoparticles, biosynthesis, Chromolaena odorata, extractionAbstract
In this study, the biosynthesis of tin(iv) oxide nanoparticles (SnO2 NPs) using leaves extract of Chromolaena Odorata was described. Although the traditional extraction method typically requires heating for collecting the extract, this study performed the extraction utilizing free heat. Subsequently, a comparative analysis was performed with the boiled version to recognize any distinctions in the formation of SnO2 NPs. Leaves of C. odorata contains bioactive compounds, particularly polyphenolic flavonoids which potentially serve as effective agents in green synthesis, acting as both reducing and capping agents for Sn4+. The synthesis was conducted at ambient temperature, followed by calcination at 700°C. FESEM images revealed that the morphologies of SnO2 NPs in both samples were uniform and spherical. The presence of O and Sn elements was further confirmed by EDX analysis, with atomic composition of approximately 76% and 23%, respectively. XRD obtained the most prominent peaks of SnO2 NPs which are (110), (101) and (211) in fair sharpness for both samples, with tetragonal structure. Furthermore, the FTIR spectrum affirmed the presence of pertinent functional groups through the vibration and stretching pattern of SnO2 and Sn-OH groups. Based on these findings, the heat-free treatment of C. odorata extract proves to be comparable to the boiled version in mediating biosynthesis. Nevertheless, the preference is towards the traditional process, as the use of heat enhances the extraction process by increasing the abundance of bioactive compounds without undergoing degradation. Additionally, it aids in stabilizing the structure of SnO2 NPs and preventing agglomeration.
Downloads
References
Akhir MAM, Mohamed K, Lee HL, Rezan SA. (2016). Synthesis of Tin Oxide Nanostructures Using Hydrothermal Method and Optimization of its Crystal size by Using Statistical Design of Experiment. Procedia Chemistry. 2016/01/01/, 19,993-998. doi:https://doi.org/10.1016/j.proche.2016.03.148
Akinmoladun AC, Ibukun EO, Dan-Ologe IA. (2007). Phytochemical constituents and antioxidant properties of extracts from the leaves of Chromolaena odorata. Scientific Research and Essays. 2,191-194.
Amini SM, Akbari A. (2019). Metal nanoparticles synthesis through natural phenolic acids. IET Nanobiotechnology. 2019/10/01, 13(8),771-777. doi:https://doi.org/10.1049/iet-nbt.2018.5386
Basu S, Cano-Odena A, Vankelecom IFJ. (2011). MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations. Separation and Purification Technology. 2011/09/05/, 81(1),31-40. doi:https://doi.org/10.1016/j.seppur.2011.06.037
Bhosale TT, Shinde HM, Gavade NL, et al. (2018). Biosynthesis of SnO2 nanoparticles by aqueous leaf extract of Calotropis gigantea for photocatalytic applications. Journal of Materials Science: Materials in Electronics. 2018/04/01, 29(8),6826-6834. doi:10.1007/s10854-018-8669-0
Buniyamin I, Akhir MR, Asli AN, Khusaimi Z, Malek FM, Mahmood RM. (2022). Nanotechnology Applications in Biomedical Systems. Current Nanomaterials. 7(3),167-180. doi:http://dx.doi.org/10.2174/2405461507666220301121135
Buniyamin I, Akhir RM, Asli NA, Khusaimi Z, Mahmood MR. (2021). Effect of calcination time on biosynthesised SnO2 nanoparticles using bioactive compound from leaves extract of Chromolaena Odorata. AIP Conference Proceedings. 2368(1)doi:10.1063/5.0057784
Buniyamin I, Akhir RM, Asli NA, Khusaimi Z, Rusop M. (2022). Green synthesis of tin oxide nanoparticles by using leaves extract of Chromolaena Odorata: The effect of different thermal calcination temperature to the energy band gap. Materials Today: Proceedings. 2022/01/01/, 48,1805-1809. doi:https://doi.org/10.1016/j.matpr.2021.09.117
Buniyamin I, Akhir RM, Nurfazianawatie MZ, et al. (2023). Aquilaria malaccensis and Pandanus amaryllifolius mediated synthesis of tin oxide nanoparticles: The effect of the thermal calcination temperature. Materials Today: Proceedings. 2023/01/01/, 75,23-30. doi:https://doi.org/10.1016/j.matpr.2022.09.580
Buniyamin I, Md Akhir R, Asnida Asli N, Khusaimi Z, Rusop Mahmood M. (2021). Biosynthesis of SnO2 nanoparticles by aqueous leaves extract of Aquilaria malaccensis (agarwood). IOP Conference Series: Materials Science and Engineering. 2021/03/01, 1092(1),012070. doi:10.1088/1757-899X/1092/1/012070
Butryee C, Sungpuag P, Chitchumroonchokchai C. (2009). Effect of processing on the flavonoid content and antioxidant capacity of Citrus hystrix leaf. International Journal of Food Sciences and Nutrition. 2009/01/01, 60(sup2),162-174. doi:10.1080/09637480903018816
Chao L, Wei W, Huanxin W, Shide W, Shaoming F, Rongfeng C. (2009). Electrodeposition route to synthesize SnO2 microparticles as an anode material for Li-ion batteries. Journal of Physics: Conference Series. 2009/03/01, 152(1),012035. doi:10.1088/1742-6596/152/1/012035
Diallo A, Manikandan E, Rajendran V, Maaza M. (2016). Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. Journal of Alloys and Compounds. 2016/10/05/, 681,561-570. doi:https://doi.org/10.1016/j.jallcom.2016.04.200
Dobrucka R, Dlugaszewska J, Kaczmarek M. (2018). Cytotoxic and antimicrobial effect of biosynthesized SnO2 nanoparticles using Pruni spinosae flos extract. Inorganic and Nano-Metal Chemistry. 2018/07/03, 48(7),367-376. doi:10.1080/24701556.2019.1569054
Elango G, Kumaran SM, Kumar SS, Muthuraja S, Roopan SM. (2015). Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015/06/15/, 145,176-180. doi:https://doi.org/10.1016/j.saa.2015.03.033
Elango G, Roopan SM. (2016). Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. Journal of Photochemistry and Photobiology B: Biology. 2016/02/01/, 155,34-38. doi:https://doi.org/10.1016/j.jphotobiol.2015.12.010
Garrafa-Galvez HE, Nava O, Soto-Robles CA, Vilchis-Nestor AR, Castro-Beltrán A, Luque PA. (2019). Green synthesis of SnO2 nanoparticle using Lycopersicon esculentum peel extract. Journal of Molecular Structure. 2019/12/05/, 1197,354-360. doi:https://doi.org/10.1016/j.molstruc.2019.07.052
Gawade VV, Gavade NL, Shinde HM, Babar SB, Kadam AN, Garadkar KM. (2017). Green synthesis of ZnO nanoparticles by using Calotropis procera leaves for the photodegradation of methyl orange. Journal of Materials Science: Materials in Electronics. 2017/09/01, 28(18),14033-14039. doi:10.1007/s10854-017-7254-2
Głuchowski P, Tomala R, Kujawa D, Boiko V, Murauskas T, Solarz P. (2022). Insights into the Relationship between Crystallite Size, Sintering Pressure, Temperature Sensitivity, and Persistent Luminescence Color of Gd2.97Pr0.03Ga3Al2O12 Powders and Ceramics. The Journal of Physical Chemistry C. 2022/04/28, 126(16),7127-7142. doi:10.1021/acs.jpcc.2c00672
Gomathi E, Jayapriya M, Arulmozhi M. (2021). Environmental benign synthesis of tin oxide (SnO2) nanoparticles using Actinidia deliciosa (Kiwi) peel extract with enhanced catalytic properties. Inorganic Chemistry Communications. 2021/08/01/, 130,108670. doi:https://doi.org/10.1016/j.inoche.2021.108670
Gorai S. (2018). Bio-based Synthesis and Applications of SnO2 Nanoparticles - An overview. Journal of Materials and Environmental Sciences. 9(10),2894-2903.
Haq S, Rehman W, Waseem M, et al. (2020). Green synthesis and characterization of tin dioxide nanoparticles for photocatalytic and antimicrobial studies. Materials Research Express. 2020/02/04, 7(2),025012. doi:10.1088/2053-1591/ab6fa1
Honarmand M, Golmohammadi M, Naeimi A. (2019). Biosynthesis of tin oxide (SnO2) nanoparticles using jujube fruit for photocatalytic degradation of organic dyes. Advanced Powder Technology. 2019/08/01/, 30(8),1551-1557. doi:https://doi.org/10.1016/j.apt.2019.04.033
Hu J. (2015). Biosynthesis of SnO2 Nanoparticles by Fig (Ficus Carica) Leaf Extract for Electrochemically Determining Hg(II) in Water Samples. International Journal of Electrochemical Science. 10(12),10668-10676.
Irmaizatussyehdany Buniyamin KAE, Noor Asnida Asli, Muhamad Faizal Abd Halim, Zuraida Khusaimi, Mohamad Rusop Mahmood (2023). Bio-synthesized Tin Oxide Nanoparticles (SnO2 NPs) as a Photocatalyst Model. Malaysia Journal of Invention and Innovation (MJII). 2(3),1-5.
Irmaizatussyehdany Buniyamin, Kevin Alvin Eswar, Maryam Mohammad, Noor Asnida Asli, Zuraida Khusaimi, & Mohamad Rusop Mahmood. (2023). Biosynthesized SnO2 Nanoparticles as the Effective Photocatalyst for Water Treatment. In APS Proceedings. Volume 7 (pp. 58–62). Academica Press Solution Malaysia. https://doi.org/10.5281/zenodo.8196769
Irmaizatussyehdany Buniyamin, Kevin Alvin Eswar, Noor Asnida Asli, Zuraida Khusaimi, & Mohamad Rusop Mahmood. (2023). Highly-Reusable Photocatalyst from Chromolaena Odorata Leaves. In APS Proceedings. Volume 6 (pp. 74–78). Academica Press. https://doi.org/10.5281/zenodo.8105831
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 9,1050-1074. doi:10.3762/bjnano.9.98
L. Fu YZ, Q. Ren, A. Wang, B. Deng. (2015). Green Biosynthesis Of SnO2 Nanoparticles by Plectranthus Amboinicus Leaf Extract Their Photocatalytic Activity Toward Rhodamine B Degradation. Journal of Ovonic Research. 11(1),21-26.
Liu Z, Zhang D, Han S, et al. (2003). Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires. Advanced Materials. 2003/10/16, 15(20),1754-1757. doi:https://doi.org/10.1002/adma.200305439
Manjunathan P, Marakatti VS, Chandra P, et al. (2018). Mesoporous tin oxide: An efficient catalyst with versatile applications in acid and oxidation catalysis. Catalysis Today. 2018/07/01/, 309,61-76. doi:https://doi.org/10.1016/j.cattod.2017.10.009
Matussin S, Harunsani MH, Tan AL, Khan MM. (2020). Plant-Extract-Mediated SnO2 Nanoparticles: Synthesis and Applications. ACS Sustainable Chemistry & Engineering. 2020/03/02, 8(8),3040-3054. doi:10.1021/acssuschemeng.9b06398
Miglio C, Chiavaro E, Visconti A, Fogliano V, Pellegrini N. (2008). Effects of Different Cooking Methods on Nutritional and Physicochemical Characteristics of Selected Vegetables. Journal of Agricultural and Food Chemistry. 2008/01/01, 56(1),139-147. doi:10.1021/jf072304b
Nehru LC, Sanjeeviraja C. (2014). Rapid synthesis of nanocrystalline SnO2 by a microwave-assisted combustion method. Journal of Advanced Ceramics. 2014/09/01, 3(3),171-176. doi:10.1007/s40145-014-0101-5
Omokhua AG, McGaw LJ, Finnie JF, Van Staden J. (2016). Chromolaena odorata (L.) R.M. King & H. Rob. (Asteraceae) in sub-Saharan Africa: A synthesis and review of its medicinal potential. Journal of Ethnopharmacology. 2016/05/13/, 183,112-122. doi:https://doi.org/10.1016/j.jep.2015.04.057
Osuntokun J, Onwudiwe DC, Ebenso EE. (2017). Biosynthesis and Photocatalytic Properties of SnO2 Nanoparticles Prepared Using Aqueous Extract of Cauliflower. Journal of Cluster Science. 2017/07/01, 28(4),1883-1896. doi:10.1007/s10876-017-1188-y
Oza G, Reyes-Calderón A, Mewada A, et al. (2020). Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach. Journal of Materials Science. 2020/02/01, 55(4),1309-1330. doi:10.1007/s10853-019-04121-3
P. Kamaraj RV, M. Arthanareeswari, S. Devikala. (2015). Biological Activities of Tin Oxide Nanoparticles Synthesized using Plant Extract. World Journal of Pharmacy and Pharmaceutical Sciences. 3(9),382-388.
Panche AN, Diwan AD, Chandra SR. (2016). Flavonoids: an overview. J Nutr Sci. 5,e47. doi:10.1017/jns.2016.41
Peralta-Videa JR, Huang Y, Parsons JG, et al. (2016). Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnology for Environmental Engineering. 2016/08/01, 1(1),4. doi:10.1007/s41204-016-0004-5
Sethumadhavan S, Arumugam Gnanamani A, Asit Baran M. (2014). Green Synthesis of Tin Based Nano Medicine: Assessment of Microstructure and Surface Property. American Journal of Nano Research and Applications. 2(4),75-83. doi:10.11648/j.nano.20140204.13
Shankar PD, Shobana S, Karuppusamy I, et al. (2016). A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme and Microbial Technology. 2016/12/01/, 95,28-44. doi:https://doi.org/10.1016/j.enzmictec.2016.10.015
Tan OK, Cao W, Hu Y, Zhu W. (2004). Nano-structured oxide semiconductor materials for gas-sensing applications. Ceramics International. 2004/01/01/, 30(7),1127-1133. doi:https://doi.org/10.1016/j.ceramint.2003.12.015
Tazikeh S, Akbari A, Talebi A, Talebi E. (2014). Synthesis and characterization of tin oxide nanoparticles via the Co-precipitation method. Materials Science-Poland. 2014/01/01, 32(1),98-101. doi:10.2478/s13536-013-0164-y
Vidhu VK, Philip D. (2015). Biogenic synthesis of SnO2 nanoparticles: Evaluation of antibacterial and antioxidant activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015/01/05/, 134,372-379. doi:https://doi.org/10.1016/j.saa.2014.06.131
Vongsak B, Sithisarn P, Mangmool S, Thongpraditchote S, Wongkrajang Y, Gritsanapan W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products. 2013/01/01/, 44,566-571. doi:https://doi.org/10.1016/j.indcrop.2012.09.021
Zainudin SNF, Abdullah H, Markom M. (2019). Electrochemical studies of tin oxide based-dye-sensitized solar cells (DSSC): a review. Journal of Materials Science: Materials in Electronics. 2019/03/01, 30(6),5342-5356. doi:10.1007/s10854-019-00929-6
Zhang J, Gao L. (2004). Synthesis and characterization of nanocrystalline tin oxide by sol–gel method. Journal of Solid State Chemistry. 2004/04/01/, 177(4),1425-1430. doi:https://doi.org/10.1016/j.jssc.2003.11.024
Zoller F, Böhm D, Bein T, Fattakhova-Rohlfing D. (2019). Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithium-Ion Batteries and Beyond. ChemSusChem. 2019/09/20, 12(18),4140-4159. doi:https://doi.org/10.1002/cssc.201901487
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Irmaizatussyehdany Buniyamin, Noor Asnida Asli, Kelvin Alvin Eswar, Syed Abdul Illah Alyahya Syed Abd Kadir, Ameran Saiman, Mohd Yusri Idorus, Mohamad Rusop Mahmood, Zuraida Khusaimi
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.