A Review on the Tropical Peatland Characteristics Towards Sustainability of Peatland in Malaysia
DOI:
https://doi.org/10.37134/geografi.vol11.2.2.2023Keywords:
Characteristic, conservation, restoration, tropical peatlands, sustainability, conservation and restorationAbstract
The natural ecosystem is a dynamic relationship between living organisms and their environment. There are two types of ecosystems: natural and artificial ecosystems. Peatland is classified as a natural ecosystem. This review covers the trace and major elements, and the character of their accumulation in peat, with a particular emphasis on peat properties, conservation and restoration. Peatland is a valuable but vulnerable resource in the world, representing a valuable carbon pool and energy as a functional system while playing a main function in hydrological and biochemical cycles. Research in the characterization and data inventory of tropical peatlands is very important to determine the peatland’s status and identify the key knowledge gaps that need to be addressed. The results are important for the conservation, restoration and sustainability science of peatland areas through the characterization of the physical soil, nutrient content and carbon pool emission for the classification of peatland conservation status before development because the disturbance impact in peatland can be irreversible. The best use of peatland considers the trade-off between development and conservation. The increasing Malaysian population has increased land demand; large peatland areas in Malaysia have been slotted for other land uses. The expansion to other land uses will cause biodiversity to decline and carbon emissions to escape into the atmosphere during the process of either land-use change or a process that involves human and natural causes. The peatland environmental problems related to peatland drainage include water table imbalance and peat fires. However, a precise understanding of the ecological, hydrological, and biodiversity processes and interactions is fundamental to adequately restoring degraded peatlands, preserving the remaining areas, and understanding the management action, whether on a small or large scale. Therefore, this paper provides an overview of the Peatland status area in Malaysia with recommendations for conservation and restoration to avoid or reduce potential ecological and biodiversity impacts for sustainability science.
Downloads
References
Adon, R., Bakar, I., Wijeyesekera, D. C., & Zainorabidin, A. (2013). Overview of the sustainable uses of peat soil in Malaysia with some relevant geotechnical assessments. International Journal of Integrated Engineering, 4(4).
Alvin L., (2010). Wetland International-Malaysia report-project funded by the Kleine Natuur Initiatief Projecten, Royal Netherlands Embassy.
Anderson, J.A.R. (1961). The ecology and forest types of the peat swamp forests of Sarawak and Brunei in relation to their silviculture. Unpublished PhD dissertation, Vol. I (191 pp) and Vol. II (Appendices). University of Edinburgh.
Armstrong, A., Holden, J., Kay, P., Francis, B., Foulger, M., Gledhill, S., & Walker, A. (2010). The impact of peatland drain-blocking on dissolved organic carbon loss and discoloration of water; results from a national survey. Journal of Hydrology, 381(1-2), 112-120.
Brown, L. E., Holden, J., Palmer, S. M., Johnston, K., Ramchunder, S. J., & Grayson, R. (2015). Effects of fire on the hydrology, biogeochemistry, and ecology of peatland river systems. Freshwater Science, 34(4), 1406-1425.
Bourgault, M. A., Larocque, M., Garneau, M., & Roux, M. (2018). Quantifying peat hydrodynamic properties and their influence on water table depths in peatlands of southern Quebec (Canada). Ecohydrology, 11(7), e1976.
Bridgham, S. D., Ping, C. L., Richardson, J. L., & Updegraff, K. (2000). Soils of northern peatlands: Histosols and Gelisols. Wetland Soils: Genesis, Hydrology, Landscapes, and Classification. Edited by JL Richardson, and MJ Vepraskas. CRC Press, Boca Raton, FL, USA, 343-370.
Bunt, B. R. (2012). Media and mixes for container-grown plants: a manual on the preparation and use of growing media for pot plants. Springer Science & Business Media.
Chapman, S., Buttler, A., Francez, A. J., Laggoun-Défarge, F., Vasander, H., Schloter, M., & Gilbert, D. (2003). Exploitation of northern peatlands and biodiversity maintenance: a conflict between economy and ecology. Frontiers in Ecology and the Environment, 1(10), 525-532.
Chapman, D. J., & Warner, B. G. (1992). Relationship between testate amoebae (Protozoa: Rhizopoda) and microenvironmental parameters on a forested peatland in northeastern Ontario. Canadian Journal of Zoology, 70(12), 2474-2482.
Charters, L. J., Aplin, P., Marston, C. G., Padfield, R., Rengasamy, N., Bin Dahalan, M. P., & Evers, S. (2019). Peat swamp forest conservation withstands pervasive land conversion to oil palm plantation in North Selangor, Malaysia. International Journal of Remote Sensing, 1-30.
Dhowian, A. W., & Edil, T. B. (1980). Consolidation behavior of peats. Geotechnical Testing Journal, 3(3), 105-114.
Dohong, A., Aziz, A. A., & Dargusch, P. (2017). A review of the drivers of tropical peatland degradation in South-East Asia. Land Use Policy, 69, 349-360.
Gofar, N., & Sutejo, Y. (2007). Long term compression behavior of fibrous peat. Malaysian Journal of Civil Engineering, 19(2), 104-116.
Grover, S. P. P., & Baldock, J. A. (2013). The link between peat hydrology and decomposition: Beyond von Post. Journal of Hydrology, 479, 130-138.
Hájek, T. (2014). Physiological ecology of peatland bryophytes. In Photosynthesis in Bryophytes and Early Land Plants (pp. 233-252). Springer Netherlands.
Hashim, R., & Islam, S. (2008). Engineering properties of peat soils in peninsular, Malaysia. Journal of Applied Sciences, 8(22), 4215-4219.
Hobbs, R. J., & Harris, J. A. (2001). Restoration ecology: repairing the earth's ecosystems in the new millennium. Restoration Ecology, 9(2), 239-246.
Holden, J. (2005). Peatland hydrology and carbon release: why small-scale process matters. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 363(1837), 2891-2913.
Holden, J., Chapman, P. J., & Labadz, J. C. (2004). Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography, 28(1), 95-123.
Huat, B. B. (2004). Organic and peat soils engineering. Universiti Putra Malaysia Press.
Huat, B. B., Kazemian, S., Prasad, A., & Barghchi, M. (2011). State of an art review of peat: General perspective. International Journal of Physical Sciences, 6(8), 1988-1996.
Idi, B. Y., & Kamarudin, M. N. (2012). Imaging Stratigraphy of Pontian Peatland, Johor Malaysia with Ground Penetrating Radar. Asian Journal of Earth Sciences, 5(2), 36.
Ingram, H. (1983) A Gore (Ed.), Ecosystems of the World, Mires: Swamp, Bog, Fen and Moor, 4A, Elsevier, Amsterdam (1983), pp. 67-158.
Jackson, C. R., Liew, K. C., & Yule, C. M. (2009). Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Microbial Ecology, 57(3), 402.
Koh, L. P., Miettinen, J., Liew, S. C., & Ghazoul, J. (2011). Remotely sensed evidence of tropical peatland conversion to oil palm. Proceedings of the National Academy of Sciences, 108(12), 5127-5132.
Kolay, P. K., Sii, H. Y., & Taib, S. N. L. (2011). Tropical peat soil stabilization using class F pond ash from coal fired power plant. International Journal of Civil and Environmental Engineering, 3(2), 79-83.
Jaenicke, J., Rieley, J. O., Mott, C., Kimman, P., & Siegert, F. (2008). Determination of the amount of carbon stored in Indonesian peatlands. Geoderma, 147(3-4), 151-158.
Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., & Byrne, K. A. (2007). How strongly can forest management influence soil carbon sequestration? Geoderma, 137(3-4), 253-268.
Joosten, H., Tapio-Biström, M. L., & Tol, S. (2012). Peatlands: guidance for climate change mitigation through conservation, rehabilitation and sustainable use. Food and Agriculture Organization of the United Nations.
Lamentowicz, M., & Mitchell, E. A. (2005). The ecology of testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology. Microbial Ecology, 50(1), 48-63.
Larsen, L. G., Harvey, J. W., & Crimaldi, J. P. (2007). A delicate balance: ecohydrological feedbacks governing landscape morphology in a lotic peatland. Ecological Monographs, 77(4), 591-614.
Lucchese, M., Waddington, J. M., Poulin, M., Pouliot, R., Rochefort, L., & Strack, M. (2010). Organic matter accumulation in a restored peatland: Evaluating restoration success. Ecological Engineering, 36(4), 482-488.
Limin, S. H., Yunsiska, E., Kitso, K., & Alim, S. (2008). Restoration of hydrological status as the key to rehabilitation of damaged peatland in Central Kalimantan. Restoration of Tropical Peatlands, 118.
McCarter, C. P., & Price, J. S. (2013). The hydrology of the Bois-des-Bel bog peatland restoration: 10 years post-restoration. Ecological Engineering, 55, 73-81.
Miettinen, J., & Liew, S. C. (2010). Degradation and development of peatlands in Peninsular Malaysia and in the islands of Sumatra and Borneo since 1990. Land Degradation & Development, 21(3), 285-296.
Miettinen, J., Shi, C., & Liew, S. C. (2012a). Two decades of destruction in Southeast Asia's peat swamp forests. Frontiers in Ecology and the Environment, 10(3), 124-128.
Miettinen, J., Hooijer, A., Wang, J., Shi, C., & Liew, S. C. (2012b). Peatland degradation and conversion sequences and interrelations in Sumatra. Regional Environmental Change, 12(4), 729-737.
Miettinen, J., Shi, C., & Liew, S. C. (2016). Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation, 6, 67-78.
Morris, P. J., Waddington, J. M., Benscoter, B. W., & Turetsky, M. R. (2011). Conceptual frameworks in peatland ecohydrology: looking beyond the two‐layered (acrotelm–catotelm) model. Ecohydrology, 4(1), 1-11.
Nath, T. K., Dahalan, M. P. B., Parish, F., & Rengasamy, N. (2017). Local Peoples’ Appreciation on and Contribution to Conservation of Peatland Swamp Forests: Experience from Peninsular Malaysia. Wetlands, 37(6), 1067-1077.
Norowi, H. M., Ismail, A. B., & Jaya, J. (2010). Arthropod responses to peat land ecosystem development: Their value as agro-environmental indicators. J. Trop. Agric. and Fd. Sc, 38(2), 275-287.
Nugent, C., Kanali, C., Owende, P. M., Nieuwenhuis, M., & Ward, S. (2003). Characteristic site disturbance due to harvesting and extraction machinery traffic on sensitive forest sites with peat soils. Forest Ecology and Management, 180(1-3), 85-98.
Ojanen, P., Minkkinen, K., & Penttilä, T. (2013). The current greenhouse gas impact of forestry-drained boreal peatlands. Forest Ecology and Management, 289, 201-208.
O’Kelly, B. C. (2015). Atterberg limits are not appropriate for peat soils. Geotechnical Research, 2(3), 123-134.
Osaki, M., Nursyamsi, D., Noor, M., & Segah, H. (2016). Peatland in Indonesia. In Tropical Peatland Ecosystems (pp. 49-58). Springer, Tokyo.
Osaki, M., & Tsuji, N. (Eds.). (2016). Tropical peatland ecosystems. Springer Japan.
Özcan, N. T., Ulusay, R., & Işık, N. S. (2018). Assessment of dynamic site response of the peat deposits at an industrial site (Turkey) and comparison with some seismic design codes. Bulletin of Engineering Geology and the Environment, 1-21.
Padfield, R., Waldron, S., Drew, S., Papargyropoulou, E., Kumaran, S., Page, S., & Zakaria, Z. (2015). Research agendas for the sustainable management of tropical peatland in Malaysia. Environmental Conservation, 42(1), 73-83.
Page, S.E., Rieley, J.O., Doody, K. et al., 1997. Biodiversity of tropical peat swamp forest: a case study of animal diversity in the Sungai Sebangau catchment of Central Kalimantan, Indonesia. In: Rieley, J.O. and Page, S.E. (Eds), Biodiversity and Sustainable Management of Tropical Peatlands. Samara,Cardigan, UK, pp. 231-242.
Page, S., Hoscilo, A., Langner, A., Tansey, K., Siegert, F., Limin, S., & Rieley, J. (2009). Tropical peatland fires in Southeast Asia. In Tropical fire ecology (pp. 263-287). Springer, Berlin, Heidelberg.
Page, S. E., Rieley, J. O., & Wüst, R. (2006). Lowland tropical peatlands of Southeast Asia. Developments in Earth Surface Processes, 9, 145-172.
Page, S., Hosciło, A., Wösten, H., Jauhiainen, J., Silvius, M., Rieley, J., & Limin, S. (2009). Restoration ecology of lowland tropical peatlands in Southeast Asia: current knowledge and future research directions. Ecosystems, 12(6), 888-905.
Paoli, G. D., Wells, P. L., Meijaard, E., Struebig, M. J., Marshall, A. J., Obidzinski, K., & Morel, A. (2010). Biodiversity conservation in the REDD. Carbon Balance and Management, 5(1), 7.
Phillips, V. D., (1961). Peatswamp ecology and sustainable development in Borneo. Biodiversity and Conservation, 7, 651-671.
Poulin, M., Andersen, R., & Rochefort, L. (2013). A new approach for tracking vegetation changes after restoration: a case study with peatlands. Restoration Ecology, 21(3), 363-371.
Posa, M. R. C., Wijedasa, L. S., & Corlett, R. T. (2011). Biodiversity and conservation of tropical peat swamp forests. BioScience, 61(1), 49-57.
Porporato, A., D’odorico, P., Laio, F., Ridolfi, L., & Rodriguez-Iturbe, I. (2002). Ecohydrology of water-controlled ecosystems. Advances in Water Resources, 25(8-12), 1335-1348.
Razali, S. N. M., Bakar, I., & Zainorabidin, A. (2013). Behaviour of peat soil in instrumented physical model studies. Procedia Engineering, 53, 145-155.
Ratcliffe, J. L., Creevy, A., Andersen, R., Zarov, E., Gaffney, P. P., Taggart, M. A., & Payne, R. J. (2017). Ecological and environmental transition across the forested-to-open bog ecotone in a west Siberian peatland. Science of the Total Environment, 607, 816-828.
Rawlins, A., & Morris, J. (2010). Social and economic aspects of peatland management in Northern Europe, with particular reference to the English case. Geoderma, 154(3-4), 242-251.
Ramchunder, S. J., Brown, L. E., & Holden, J. (2012). Catchment‐scale peatland restoration benefits stream ecosystem biodiversity. Journal of Applied Ecology, 49(1), 182-191.
Reeve, A. S., Siegel, D. I., & Glaser, P. H. (2000). Simulating vertical flow in large peatlands. Journal of Hydrology, 227(1-4), 207-217.
Rodriguez‐Iturbe, I. (2000). Ecohydrology: A hydrologic perspective of climate‐soil‐vegetation dynamies. Water Resources Research, 36(1), 3-9.
Schindler, D. W., & Lee, P. G. (2010). Comprehensive conservation planning to protect biodiversity and ecosystem services in Canadian boreal regions under a warming climate and increasing exploitation. Biological Conservation, 143(7), 1571-1586.
Shantz, M. A., & Price, J. S. (2006). Hydrological changes following restoration of the Bois-des-Bel Peatland, Quebec, 1999–2002. Journal of Hydrology, 331(3-4), 543-553.
Silc, T., & Stanek, W. (1977). Bulk density estimation of several peats in northern Ontario using the von Post humification scale. Canadian Journal of Soil Science, 57(1), 75-75.
Sklar, F. H., Chimney, M. J., Newman, S., McCormick, P., Gawlik, D., Miao, S., cni& Crozier, G. (2005). The ecological–societal underpinnings of Everglades restoration. Frontiers in Ecology and the Environment, 3(3), 161-169.
Tan, K. T., Lee, K. T., Mohamed, A. R., & Bhatia, S. (2009). Oil Palm: addressing issues and towards sustainable development. Renewable and Sustainable Energy Reviews, 13(2), 420-427.
Trepel, M., & Kluge, W. (2002). Ecohydrological characterization of a degenerated valley peatland in Northern Germany for use in restoration. Journal for Nature Conservation, 10(3), 155-169.
Tolvanen, A., Juutinen, A., & Svento, R. (2013). Preferences of local people for the use of peatlands: the case of the richest peatland region in Finland. Ecology and Society, 18(2): 19, 1-13.
Veloo, R. (2015). Improved soil classification and implications for soil economics of tropical peatlands: the case of oil palm in Sarawak, Malaysia (Doctoral dissertation, Ghent University).
Veloo, R., Van Ranst, E., & Selliah, P. (2015). Peat characteristics and its impact on oil palm yield. NJAS-Wageningen Journal of Life Sciences, 72, 33-40.
Van, B. S., Garneau, M., & Booth, R. K. (2011). Holocene carbon accumulation rates from three ombrotrophic peatlands in boreal Quebec, Canada: impact of climate-driven ecohydrological change. The Holocene, 21(8), 1217-1231.
Von, P., L. (1922). Sveriges geologiska undersciknings torvinventering och niLgra av dess hittills vunna resultat. Sv. Mosskulturfcirening, Tidskr. L, l-27.
Waddington, J. M., Morris, P. J., Kettridge, N., Granath, G., Thompson, D. K., & Moore, P. A. (2015). Hydrological feedbacks in northern peatlands. Ecohydrology, 8(1), 113-127.
Wetlands International. (2010). A quick scan of peatlands in Malaysia. Wetlands International-Malaysia, Petaling Jaya, Malaysia. 50 pp.
Wicke, B., Sikkema, R., Dornburg, V., & Faaij, A. (2011). Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy, 28(1), 193-206.
Wind-Mulder, H. L., Rochefort, L., & Vitt, D. H. (1996). Water and peat chemistry comparisons of natural and post-harvested peatlands across Canada and their relevance to peatland restoration. Ecological Engineering, 7(3), 161-181.
Woziwoda, B., & Kopeć, D. (2014). Afforestation or natural succession? Looking for the best way to manage abandoned cut-over peatlands for biodiversity conservation. Ecological Engineering, 63, 143-152.
Wösten, J. H. M., & Ritzema, H. P. (2001). Land and water management options for peatland development in Sarawak, Malaysia. International Peat Journal, 11, 59-66.
Wösten, J. H. M., Van Den Berg, J., Van Eijk, P., Gevers, G. J. M., Giesen, W. B. J. T., Hooijer, A., & Aswandi, I. (2006). Interrelationships between hydrology and ecology in fire degraded tropical peat swamp forests. Water Resources Development, 1, 157-174.
Wüst, R. A., Bustin, R. M., & Lavkulich, L. M. (2003). New classification systems for tropical organic-rich deposits based on studies of the Tasek Bera Basin, Malaysia. Catena, 53(2), 133-163.
Young, D. M., Baird, A. J., Morris, P. J., & Holden, J. (2017). Simulating the long‐term impacts of drainage and restoration on the ecohydrology of peatlands. Water Resources Research, 53(8), 6510-6522.
Yule, C. M. (2010). Loss of biodiversity and ecosystem functioning in Indo-Malayan peat swamp forests. Biodiversity and Conservation, 19(2), 393-409.
Yulindasari, Y. (2006). Compressibilty characteristics of fibrous peat soil (Doctoral dissertation, Universiti Teknologi Malaysia, Faculty of Civil Engineering).
Zak, D., Goldhammer, T., Cabezas, A., Gelbrecht, J., Gurke, R., Wagner, C., & McInnes, R. (2018). Top soil removal reduces water pollution from phosphorus and dissolved organic matter and lowers methane emissions from rewetted peatlands. Journal of Applied Ecology, 55(1), 311-320.
Zainorabidin, A., & Bakar, I. (2003). Engineering properties of in-situ and modified hemic peat soil in Western Johor. 2nd international conference on advances in soft soil engineering and technology, Putrajaya (pp. 173-181).
Zalewski, M. (2000). Ecohydrology-the scientific background to use ecosystem properties as management tools toward sustainability of water resources. Ecological Engineering, 16(1), 1-8.
Zalewski, M. (2012). Ecohydrology–process-oriented thinking for sustainability of river basins. Ecohydrology & Hydrobiology, 12(2), 89-92.
Zalewski, M. (2013). Ecohydrology: process-oriented thinking towards sustainable river basins. Ecohydrology & Hydrobiology, 13(2), 97-103.
Zulkifley, M. T. M., Ng, T. F., Abdullah, W. H., Raj, J. K., Shuib, M. K., Ghani, A. A., & Ashraf, M. A. (2015). Geochemical characteristics of a tropical lowland peat dome in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia. Environmental Earth Sciences, 73(4), 1443-1458.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Mohamad Adam Omar, Faridah Othman, Ayob Katimon, Lulie Melling
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.