Synthesis and Characterisation of Metallosurfactants as Carbon Dioxide Viscosity Modifier

Authors

  • Azmi Mohamed Department of Chemistry, Faculty of Science and Mathematics, University Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
  • Khadega R Abdosalam Department of Chemistry, Faculty of Science and Mathematics, University Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia

DOI:

https://doi.org/10.37134/ejsmt.vol4.2.3.2017

Keywords:

carbon dioxide, viscosity modifier, surfactant

Abstract

This paper focuses on a systematic approach to enhance the viscosity of supercritical CO2 (scCO2) for enhanced recovery applications. Recent successful results have shown for the first time that fluorinated surfactants can be used as viscosity modifiers for CO2. Although some fluorinated surfactants have been synthesised, up to now no systematic studies have been carried out toward scCO2 viscosity enhancement and impeded commercial developments of viscosity modifier. Here, metallosurfactant structure design was focused on anionic surfactant analogues of Aerosol -OT (sodium bis (2-ethyexyl) sulfosuccinate). The metallosurfactant were systematically synthesised with modification centred on fluorinated content in surfactant chain with introduction of nickel (Ni2+) and manganese (Co2+) counter ions. The metallosurfactant have been investigated by a range of techniques including Nuclear Magnetic Resonance (NMR) Spectroscopy, UV-Visible Spectroscopy and High-Pressure Viscometer. The result shows that fluorination is a crucial factor influencing Aerosol-OT surfactant analogue compatibility with scCO2. The presence of fluorine in the metallosurfactant chemical structure gives rise to relative scCO2 viscosity. The results obtained are beneficial for expanding CO2 in enhanced oil recovery applications and realising its potential using the most efficient metallosurfactant as CO2 viscosity modifier.

Downloads

Download data is not yet available.

References

Young, J.; DeSimone, J. M., & Tumas, W. (Eds.). (2003). Green chemistry using liquid and supercritical carbon
dioxide. Oxford University Press. New York, NY, 228.

Keyes, F. G.; Kirkwood. (1930). Phase Behaviour and its Effects on Reactions in Liquid and Supercritical
Carbon Dioxide. Journal Physical Chemistry, 36, 754-761.

Eastoe, J., & Gold, S. (2005). Self-assembly in green solvents. Physical Chemistry Chemical Physics, 7(7), 1352-1362.

DeSimone, J. M. (2002). Practical approaches to green solvents. Science, 297(5582), 799-803.

Adam, D. (2000). Clean and green. But are they mean? Nature 407, 938-940.

Shi, C., Huang, Z., Beckman, E. J., Enick, R. M., Kim, S. Y., & Curran, D. P. (2001). Semi-fluorinated trialkyltin fluorides and fluorinated telechelic ionomers as viscosity-enhancing agents for carbon dioxide. Industrial & engineering chemistry research, 40(3), 908-913.

Ohde, H., Wai, C. M., Kim, H., Kim, J., & Ohde, M. (2002). Hydrogenation of olefins in supercritical CO2
catalyzed by palladium nanoparticles in a water-in-CO2 microemulsion. Journal of the American Chemical
Society, 124(17), 4540-4541.

Ohde, M., Ohde, H., & Wai, C. M. (2005). Recycling nanoparticles stabilized in water-in-CO2 microemulsions
for catalytic hydrogenations. Langmuir, 21(5), 1738-1744.

Mark D. Doherty, Jason J. Lee, Aman Dhuwe, Michael J. O’Brien, M. J., Perry, R. J., Beckman, E. J., & Enick, R. M. (2016). Small Molecule Cyclic Amide and Urea Based Thickeners for Organic and sc-CO2/Organic Solutions. Energy & Fuels, 30(7), 5601-5610.

Huang, Z., Shi, C., Xu, J., Kilic, S., Enick, R. M., & Beckman, E. J. (2000). Enhancement of the viscosity of carbon dioxide using styrene/fluoroacrylate copolymers. Macromolecules, 33(15), 5437-5442.

McClain, J. B., London, D., Combes, J. R., Romack, T. J., Canelas, D. A., Betts, D. E., ... & DeSimone, J. M.(1996). Solution properties of a CO2-soluble fluoropolymer via small angle neutron scattering. Journal of the American Chemical Society, 118(4), 917-918.

Trickett, K., Xing, D., Eastoe, J., Enick, R., Mohamed, A., Hollamby, M. J., ... & Heenan, R. K. (2010). Hydrocarbon metallosurfactants for CO2. Langmuir, 26(7), 4732-4737.

Mohamed, A.; Sagisaka, M.; Guittard, F.; Cummings, S.; Paul, A.; Rogers, S. E.; Heenan, R. K.; Dyer, R.;
Eastoe, J., Low Fluorine Content CO2-philic Surfactants. Langmuir 2011, 27, (17), 10562-10569.

Mohamed, A., Ardyani, T., Sagisaka, M., Ono, S., Narumi, T., Kubota, M., & Hashim, N. (2015). Economical
and Efficient Hybrid Surfactant with Low Fluorine Content for the Stabilisation of Water-in-CO2
Microemulsions. The Journal of Supercritical Fluids, 98, 127-136.

Mohamed, A., Ardyani, T., Bakar, S. A., Sagisaka, M., Ono, S., Narumi, T. & Eastoe, J. (2016). Effect of
surfactant headgroup on low-fluorine-content CO2-philic hybrid surfactants. The Journal of Supercritical
Fluids, 116, 148-154.

Eastoe, J., Fragneto, G., Robinson, B. H., Towey, T. F., Heenan, R. K., & Leng, F. J. (1992). Variation of surfactant counterion and its effect on the structure and properties of Aerosol-OT-based water-in-oil microemulsions. Journal of the Chemical Society Faraday Transactions, 88(3), 461-471.

Eastoe, J., Steytler, D. C., Robinson, B. H., & Heenan, R. K. (1994). Pressure-induced structural changes in water-in-propane microemulsions. Journal of the Chemical Society, Faraday Transactions, 90(20), 3121-3127.

Eastoe, J., Robinson, B. H., & Heenan, R. K. (1993). Water-in-oil microemulsions formed by ammonium and tetra propylammonium salts of Aerosol OT. Langmuir, 9(11), 2820-2824.

Sagisaka, M., Hino, M., Oasa, J., Yamamoto, M., Yoda, S., Takebayashi, Y., ... & Otake, K. (2009). Characterization of water/supercritical CO2 microemulsion by UV-visible spectroscopy and dynamic light scattering. Journal of oleo science, 58(2), 75-83.

Sagisaka, M., Yoda, S., Takebayashi, Y., Otake, K., Kitiyanan, B., Kondo, Y., ... & Abe, M. (2003). Preparation of a W/scCO2 microemulsion using fluorinated surfactants. Langmuir, 19(2), 220-225.

Takahashi, R., Sato, S., Sodesawa, T., & Nishida, H. (2002). Effect of pore size on the liquid-phase pore diffusion of nickel nitrate. Physical Chemistry Chemical Physics, 4(15), 3800-3805.

Trickett, K., Xing, D., Enick, R., Eastoe, J., Hollamby, M. J., Mutch, K. J., ... & Steytler, D. C. (2009). Rodlike micelles thicken CO2. Langmuir, 26(1), 83-88.

Eastoe, J., Downer, A., Paul, A., Steytler, D. C., Rumsey, E., Penfold, J., & Heenan, R. K. (2000). Fluorosurfactants
at air/water and water/CO2 interfaces. Physical Chemistry Chemical Physics, 2(22), 5235-5242.

Dalvi, V. H., Srinivasan, V., & Rossky, P. J. (2010). Understanding the effectiveness of fluorocarbon ligands
in dispersing nanoparticles in supercritical carbon dioxide. The Journal of Physical Chemistry C, 114(37),
15553-15561.

Eastoe, J., Cazelles, B. M., Steytler, D. C., Holmes, J. D., Pitt, A. R., Wear, T. J., & Heenan, R. K. (1997). Water-in-CO2 microemulsions studied by small-angle neutron scattering. Langmuir, 13(26), 6980-6984.

Cummings, S., Xing, D., Enick, R., Rogers, S., Heenan, R., Grillo, I., & Eastoe, J. (2012). Design principles
for supercritical CO 2 viscosifiers. Soft Matter, 8(26), 7044-7055.

Downloads

Published

2017-12-11

How to Cite

Mohamed, A., & Abdosalam, K. R. (2017). Synthesis and Characterisation of Metallosurfactants as Carbon Dioxide Viscosity Modifier. EDUCATUM Journal of Science, Mathematics and Technology, 4(2), 16–28. https://doi.org/10.37134/ejsmt.vol4.2.3.2017