Preparation of Multiwall Carbon Nanotubes/Cellulose Nanocomposites Stabilized By 1-Butyl-3-Methyl-Imidazolium (BMIM) - Surfactants

Authors

  • Rabiaa Abu Azoum Ali Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia.
  • Azmi Mohamed Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjung Malim, Perak, Malaysia

DOI:

https://doi.org/10.37134/ejsmt.vol5.2.3.2018

Keywords:

Multiwall carbon nanotubes (MWCNTs), surfactant, cellulose, nanocomposite

Abstract

Multiwall carbon nanotubes (MWCNTs) ability to improve electrical, optical and mechanical properties of nanocomposites, have attracted great amount of interest for their huge potential in applying them as filler in polymer matrix. However, this application was hindered because of their low dispersion in polymer matrix and tendency to self-associate into macro-scale aggregates.  Recently, diffusion of MWCNTs in cellulose polymer matrix was studied and prepared via latex technology approaches by the addition of 1-butyl-3-methyl-imidazolium (BMIM)-surfactant. The performance of BMIM-surfactants for dispersing MWCNTs in polymer was characterized using a range of techniques including field emission scanning electron microscopy (FESEM), and Thermogravimetric analysis (TGA). Meanwhile, the conductivities of the nanocomposites were also investigated using four-point probe measurements. In this study, MWCNTs were efficiently dispersed in cellulose utilizing 1-butyl-3-methyl imidazolium-dodecyl benzene sulfonate (BMIM-DBS). Interestingly, it was found that BMIM-DBS performs much better than that of the commercially available surfactant sodium dodecyl benzenesulfonate (SDBS), demonstrating the importance of the effect of surfactant counter-ion leading to improved dispersion of MWCNTs in cellulose. This finding will significantly contribute towards the improvement of properties of cellulose for nanocomposite industries.

 

Downloads

Download data is not yet available.

References

Kim, K. S., Bae, D. J., Kim, J. R., Park, K. A., Lim, S. C., Kim, J. J., ... & Lee, Y. H. (2002). Modification of electronic structures of a carbon nanotube by hydrogen functionalization. Advanced Materials, 14(24), 1818-1821.

Wu, Z., Chen, Z., Du, X., Logan, J. M., Sippel, J., Nikolou, M., ... & Rinzler, A. G. (2004). Transparent, conductive carbon nanotube films. Science, 305(5688), 1273-1276.

Shibayama, K.; Nakasuga, A. Japan, Patent number JP 2004075706. 2004.

Tanaka, T., Sano, E., Imai, M., & Akiyama, K. (2010). Electrical conductivity of carbonnanotube/cellulose composite paper. Journal of Applied Physics, 107(5), 054307.

Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358-3393.

Turner, M. B., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2004). Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules, 5(4), 1379-1384.

Uchida, T., & Kumar, S. (2005). Single wall carbon nanotube dispersion and exfoliation in polymers. Journal of Applied Polymer Science, 98(3), 985-989.

Fei, B., Lu, H., Hu, Z., & Xin, J. H. (2006). Solubilization, purification and functionalization of carbon nanotubes using polyoxometalate. Nanotechnology, 17(6), 1589.

Fugetsu, B., Sano, E., Sunada, M., Sambongi, Y., Shibuya, T., Wang, X., & Hiraki, T. (2008). Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. Carbon, 46(9), 1256-1258.

Seelenmeyer, S., & Ballauff, M. (2000). Analysis of surfactants adsorbed onto the surface of latex particles by small-angle X-ray scattering. Langmuir, 16(9), 4094-4099.

Assouline, E., Lustiger, A., Barber, A. H., Cooper, C. A., Klein, E., Wachtel, E., & Wagner, H. D. (2003). Nucleation ability of multiwall carbon nanotubes in polypropylene composites. Journal of Polymer Science Part B: Polymer Physics, 41(5), 520-527.

Vaisman, L., Wachtel, E., Wagner, H. D., & Marom, G. (2007). Polymer-nanoinclusion interactions in carbon nanotube based polyacrylonitrile extruded and electrospun fibers. Polymer, 48(23), 6843-6854.

Mohamed, A., Anas, A. K., Bakar, S. A., Ardyani, T., Zin, W. M. W., Ibrahim, S., ... & Eastoe, J. (2015). Enhanced dispersion of multiwall carbon nanotubes in natural rubber latex nanocomposites by surfactants bearing phenyl groups. Journal of Colloid and Interface Science, 455, 179-187.

Egerton, RF. (2005). Physical principles of electron microscopy. New York: Springer.

Gabbot, P. (2008). Principles and applications of thermal analysis. Oxford: Blackwell Publishing

Jiang, Z., Chen, D., Yu, Y., Miao, J., Liu, Y., & Zhang, L. (2017). Composite fibers prepared from multiwalled
carbon nanotubes/cellulose dispersed/dissolved in ammonium/dimethyl sulfoxide mixed solvent. RSC Advances, 7(4), 2186-2192.

Gao, J., Itkis, M. E., Yu, A., Bekyarova, E., Zhao, B., & Haddon, R. C. (2005). Continuous spinning of a single-walled carbon nanotube−nylon composite fiber. Journal of the American Chemical Society, 127(11), 3847-3854.

Zhang, H., Wang, Z. G., Zhang, Z. N., Wu, J., Zhang, J., & He, J. S. (2007). Regenerated‐Cellulose/Multiwalled‐Carbon‐Nanotube Composite Fibers with Enhanced Mechanical Properties Prepared with the Ionic Liquid 1‐Allyl‐3‐Methyl Imidazolium Chloride. Advanced Materials, 19(5), 698-704.

Goh, P. S., Ng, B. C., Ismail, A. F., Aziz, M., & Sanip, S. M. (2010). Surfactant dispersed multi-walled carbon nanotube/polyetherimide nanocomposite membrane. Solid State Sciences, 12(12), 2155-2162.

Dogan, H., & Hilmioglu, N. D. (2010). Zeolite-filled regenerated cellulose Membranes for pervaporative
dehydration of glycerol. Vacuum, 84(9), 1123-1132.

Downloads

Published

2018-12-04

How to Cite

Azoum Ali, R. A., & Mohamed, A. (2018). Preparation of Multiwall Carbon Nanotubes/Cellulose Nanocomposites Stabilized By 1-Butyl-3-Methyl-Imidazolium (BMIM) - Surfactants. EDUCATUM Journal of Science, Mathematics and Technology, 5(2), 19–32. https://doi.org/10.37134/ejsmt.vol5.2.3.2018