Green Fluorescence Property of Chromone-based Hydrazone Towards Zn2+ Ion
DOI:
https://doi.org/10.37134/jsml.vol12.2.13.2024Keywords:
Chromone-based hydrazone, fluorescence property, chemosensor, Zn2 ionAbstract
Excessive concentration of Zn in the environment may lead to bad toxicological responses that can affect human health and create numerous challenges in the environment. Therefore, it is very important to develop a sensitive method such as selective chemosensors based on fluorescence property which does not require laborious work in order to detect Zn metal ion. A formylchromone-thiosemicarbazide with two chloro derivatives namely DFCTSC was synthesized from reflux reaction of 6,8-dichloroformylchromone (DCF) and thiosemicarbazide (TSC) in ethanol. The characterisation of ligand structure was determined by using spectroscopic techniques such as Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-VIS) and nuclear magnetic resonance spectroscopy (NMR). Meanwhile, the fluorescence property of DFCTSC in the presence of Zn ion was recorded using fluorescence spectrophotometer. The result showed DFCTSC has a good fluorescence behaviour towards Zn ion by giving turn-on green fluorescence at peak 500 nm and emit light when it observed under UV light. The behaviour displayed the ability of ligand to be used as a potential fluorescent chemosensor for detecting Zn2+.
Keywords: Chromone-based hydrazone, fluorescence property; chemosensor; Zn ion
Downloads
References
Arifin, W. M. H., Juahir, Y., Ali, N. M., Bakar, N. A., Ahmad, M. S., Supian, F. L., & Osman, U. M. (2018). Synthesis and characterization of chromone-based ligand and its fluorescence property towards Zn2+. IOP Conference Series: Materials Science and Engineering, 440(1). https://doi.org/10.1088/1757-899X/440/1/012015
Asayama, S., Sakata, M., & Kawakami, H. (2017). Structure-activity relationship between Zn2 +-chelated alkylated poly(1-vinylimidazole) and gene transfection. Journal of Inorganic Biochemistry, 173(November 2016), 120–125. https://doi.org/10.1016/j.jinorgbio.2017.05.007
Gaber, M., El-Baradie, K., El-Wakiel, N., & Hafez, S. (2020). Synthesis and characterization studies of 3-formyl chromone Schiff base complexes and their application as antitumor, antioxidant and antimicrobial. Applied Organometallic Chemistry, 34(2), 1–15. https://doi.org/10.1002/aoc.5348
Hazra, A., & Roy, P. (2021). A 4-methyl-2,6-diformylphenol based fluorescent chemosensor for Al3+. Inorganic Chemistry Communications, 130(April), 108694. https://doi.org/10.1016/j.inoche.2021.108694
Hernández-Camacho, J. D., Vicente-García, C., Parsons, D. S., & Navas-Enamorado, I. (2020). Zinc at the crossroads of exercise and proteostasis. Redox Biology, 35(March), 101529. https://doi.org/10.1016/j.redox.2020.101529
Kargar, H., Ardakani, A. A., Tahir, M. N., Ashfaq, M., & Munawar, K. S. (2021). Synthesis, spectral characterization, crystal structure determination and antimicrobial activity of Ni(II), Cu(II) and Zn(II) complexes with the Schiff base ligand derived from 3,5-dibromosalicylaldehyde. Journal of Molecular Structure, 1229, 129842. https://doi.org/10.1016/j.molstruc.2020.129842
Lai, L., Yan, F., Chen, G., Huang, Y., Huang, L., & Li, D. (2023). Recent Progress on Fluorescent Probes in Heavy Metal Determinations for Food Safety: A Review. In Molecules (Vol. 28, Issue 15). https://doi.org/10.3390/molecules28155689
Li, J., Yin, C., & Huo, F. (2016). Development of fluorescent zinc chemosensors based on various fluorophores and their applications in zinc recognition. Dyes and Pigments, 131, 100–133. https://doi.org/10.1016/j.dyepig.2016.03.043
Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. Bin, Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A., & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University - Science, 34(3), 101865. https://doi.org/10.1016/j.jksus.2022.101865
Nam, H., Moon, S., Gil, D., & Kim, C. (2023). A Dinitrophenol-Based Colorimetric Chemosensor for Sequential Cu2+ and S2− Detection. Chemosensors, 11(2). https://doi.org/10.3390/chemosensors11020143
Nootem, J., Daengngern, R., Sattayanon, C., Wattanathana, W., Wannapaiboon, S., Rashatasakhon, P., & Chansaenpak, K. (2021). The synergy of CHEF and ICT toward fluorescence ‘turn-on’ probes based on push-pull benzothiazoles for selective detection of Cu2+ in acetonitrile/water mixture. Journal of Photochemistry and Photobiology A: Chemistry, 415(January), 113318. https://doi.org/10.1016/j.jphotochem.2021.113318
Pezzi, J. C., de Bem, C. M. B. E., da Rocha, T. J., Schumacher-Schuh, A. F., Chaves, M. L. F., Rieder, C. R., Hutz, M. H., Fiegenbaum, M., & Camozzato, A. L. (2017). Association between DNA methyltransferase gene polymorphism and Parkinson’s disease. Neuroscience Letters, 639(16), 146–150. https://doi.org/10.1016/j.neulet.2016.12.058
Prasad, A. S., Bao, B., Beck, F. W. J., Kucuk, O., & Sarkar, F. H. (2004). Antioxidant effect of zinc in humans. Free Radical Biology and Medicine, 37(8), 1182–1190. https://doi.org/10.1016/j.freeradbiomed.2004.07.007
Rashid, A., Schutte, B. J., Ulery, A., Deyholos, M. K., Sanogo, S., Lehnhoff, E. A., & Beck, L. (2023). Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy, 13(6), 1–30. https://doi.org/10.3390/agronomy13061521
Salar, U., Khan, K. M., Chigurupati, S., Taha, M., Wadood, A., Vijayabalan, S., Ghufran, M., & Perveen, S. (2017). New Hybrid Hydrazinyl Thiazole Substituted Chromones: As Potential α-Amylase Inhibitors and Radical (DPPH & ABTS) Scavengers. Scientific Reports, 7(1), 1–17. https://doi.org/10.1038/s41598-017-17261-w
Shi, Y., Zhang, W., Xue, Y., & Zhang, J. (2023). Fluorescent Sensors for Detecting and Imaging Metal Ions in Biological Systems: Recent Advances and Future Perspectives. Chemosensors, 11(4). https://doi.org/10.3390/chemosensors11040226
Singh, G., & Malhotra, R. (2017). Synthesis and antimicrobial activity of thiosemicarbazide induced hydrazone of 4-oxo-4H-chromene-3-carbaldehyde. AIP Conference Proceedings, 1860(April). https://doi.org/10.1063/1.4990363
Sun, J., Yu, T., Yu, H., Sun, M., Li, H., Zhang, Z., Jiang, H., & Wang, S. (2014). Highly efficient turn-on fluorescence detection of zinc(ii) based on multi-ligand metal chelation. Analytical Methods, 6(17), 6768–6773. https://doi.org/10.1039/c4ay00844h
Tamil Selvan, G., Varadaraju, C., Tamil Selvan, R., Enoch, I. V. M. V., & Mosae Selvakumar, P. (2018). On/Off Fluorescent Chemosensor for Selective Detection of Divalent Iron and Copper Ions: Molecular Logic Operation and Protein Binding. ACS Omega, 3(7), 7985–7992. https://doi.org/10.1021/acsomega.8b00748
Tomer, N., Goel, A., Ghule, V. D., & Malhotra, R. (2021). A chromone based Schiff base: An efficient colorimetric sensor for specific detection of Cu (II) ion in real water samples. Journal of Molecular Structure, 1227(xxxx), 129549. https://doi.org/10.1016/j.molstruc.2020.129549
Wang, H., Liu, H., Bai, F. Q., Qu, S., Jia, X., Ran, X., Chen, F., Bai, B., Zhao, C., Liu, Z., Zhang, H. X., & Li, M. (2015). Theoretical and experimental study on intramolecular charge-transfer in symmetric bi-1,3,4-oxadiazole derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 312, 20–27. https://doi.org/10.1016/j.jphotochem.2015.07.006
Zhang, Y., Liu, Y., & Qiu, H. (2018). Association between dietary Zinc intake and hyperuricemia among adults in the united states. Nutrients, 10(5), 1–12. https://doi.org/10.3390/nu10050568
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nur Aziani Hermanto, Yusnita Juahir, Suzaliza Mustafar, Aisyah Mohamad Sharif, Uwaisulqarni M. Osman, Alizar Ulianas
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.