Effect of Carbonization Temperature on Properties of Char from Palm Kernel Shell


  • Alhassan Adeku Sallau Chemistry Department, Abubakar Tafawa Balewa University Bauchi, Bauchi State, Nigeria
  • Aliyu Jauro National Environmental Standards and Regulations Enforcement Agency (NESREA), Abuja, Nigeria
  • Alhaji Modu Kolo Chemistry Department, Abubakar Tafawa Balewa University Bauchi, Bauchi State, Nigeria
  • Umar Faruq Hassan Chemistry Department, Abubakar Tafawa Balewa University Bauchi, Bauchi State, Nigeria
  • Eno Okon Ekanem Chemistry Department, Federal University Otuoke, Bayelsa State, Nigeria




Biomass, Carbonization, Correlation, Diffractograms, Morphology, Proximate, Ultimate analysis


The study investigates the effect of carbonization temperature of palm kernel shell (PKS) biomass, with a view to obtaining char suitable for electrode material. Char were obtained from palm kernel shell by carbonization at temperatures of 600, 800, 1000 and 1150 °C under inert condition for 60 mins each. The effect of carbonization temperature on proximate and ultimate, electrical conductivity, structural and morphological properties was investigated using the ASTM standard method for examination of coal and coke, elemental analyzer, four-point probe, x-ray diffractometer (XRD), Fourier transform infrared (FTIR) spectrometer and scanning electron microscope (SEM). The proximate analysis results showed the char yield to decrease from 29.68 % to 25.27 % as the temperature increases from 600 °C to 1150 °C. While the fixed carbon content in the raw sample was found as 22.22 %, it increases to 73.02 % in char obtained at 600 °C with highest value of 87.45 % obtained at 1150 °C. The volatile matter and moisture content values reduces with increase in temperature. An increase in carbonization temperature, also led to increase in elemental carbon content as well as improved electrical conductivity from 5.56 x 10-8 S/cm to 7.67 x 10-2 S/cm. Evidence of aromaticity and crystallinity towards graphitization was found from the FTIR and XRD analysis results. The results of electrical conductivity and XRD suggest possible use of the char obtained at 1150 °C for electrode material.


Download data is not yet available.

Author Biography

Alhassan Adeku Sallau, Chemistry Department, Abubakar Tafawa Balewa University Bauchi, Bauchi State, Nigeria

Sheda Science and Technology Complex, Abuja, Nigeria


Abdul-Rahman, A., Sulaiman, F. and Abdullah, N. (2016). Influence of Washing Medium Pre-treatment on Pyrolysis Yields and Product Characteristics of Palm Kernel Shell. Journal of Physical Science. 27(1), 53–75.

Barnakova, N. C., Khokhlovaa, G. P., Malyshevaa, V. Y., Popovaa, A. N. and Ismagilova, Z. R. (2015). X_Ray Diffraction Analysis of the Crystal Structures of Different Graphite. Solid Fuel Chemistry. 49(1).,25–29.

Bogeat, B. A. (2019): Understanding and Tuning the Electrical Conductivity of Activated Carbon: A State-of-the-Art Review, Critical Reviews in Solid State and Materials Sciences. DOI: 10.1080/10408436.2019.1671800

Chowdhury Z. Z., Karim, Z. M., Ashraf, A. M.and Khalid K. (2016). Influence of carbonization temperature on physicochemical properties of biochar derive from slow pyrolysis of Durian wood (Durio zibethinus) sawdust. Bioresources .11(2),3356-3372.

Coates, J., (2019). Interpretation of Infrared Spectra, A Practical Approach, Encyclopedia of Analytical Chemistry. Copyrights John Wiley & Sons Ltd.1-23.

Daud, W. M. A. W., Ali, W. S. W. and Sulaiman, Z. M. (2001). Effect of carbonization temperature on the yield and porosity of char produced from palm shell. Journal of chemical technology and biotechnology. 76.1281-1285. Doi:10.1002/jctb.515

Dehkhoda, M. A. (2016). Development and characterization of activated biochar as electrode material for capacitive deionization. PhD dissertation (published) Chemical and Biological Engineering, University of British-Columbia, Vancouver.

Ding, Y., Wang, T., Dong, D. and Zhang, Y. (2020). Using biochar and coal as the electrode material for Super capacitor applications. Frontier Energy Research. 7:159. Doi:10.3389/fenrg.2019.00159

Fernandes, C. C. B., Mendes, F. K., Júnior, D. F. A., Caldeira, S. P. V., Teófilo, S. M. T, Silva, S. T., Mendonça, V., Souza, F. M. and Silva, V. D. (2020). Impact of Pyrolysis Temperature on the Properties of Eucalyptus Wood-Derived Biochar. Materials. 13, 5841.doi:10.3390/ma13245841

Ghali A. E., Marzoug, I. B., Baouab, M. H. V. and Roudesli, M. S. (2012). “Separation and characterization of new cellulosic fibres from the Juncus acutus plant”. Bioresource.7(2). 2002-2018.

Ghani, W. A.W. K., Fernandez, S. P., Halele, Q. M., Sobri, S. and Jasni, J. (2016). Physical and Electrochemical Characterization of Palm Kernel Shell Biochar (PKSB) as Supercapacitor. MATEC Web of Conferences 62. DOI:10.1051/matecconf/2016620

Girgis, S. B., Temerk, M. Y., Gadelrab, M. M. and Abdullah, D. I. (2007). X-ray Diffraction Patterns of Activated Carbons Prepared under Various Conditions. Carbon Science. 8(2). 95-100.

Hoffmann, V., Rodriguez, C. C., Sautter, D., Maringolo, E. and Kruse, A. (2019). Study of the electrical conductivity of biobased carbonaceous powder materials under moderate pressure for the application as electrode materials in energy storage technologies. GCB Bioenergy. 11:230–248.

Huggins, T., Wanga, H., Kearns, J., Jenkins, P. and Ren, J. Z. (2014). Biochar as a sustainable electrode material for electricity production in microbial fuel cells. GCB Bioenergy.11:230–248. https://doi.org/10.1111/gcbb.12545

Imam, T and Capareda, S (2012). Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J. Anal. Appl. Pyrol., 93: 170-177.

Kang, S. D., Lee, M. S., Lee, H. S. and Roh, S. J. (2018). X-ray diffraction analysis of the crystallinity of phenolic resin-derived carbon as a function of the heating rate during the carbonization process. Carbon Letters.. 27.108-111.

Kong, S. H., Loh, K. S., Bachmann, T. R., Zainal, H. and Cheong, Y. K. (2019). Palm kernel shell biochar Production, characteristics and carbon sequestration potential. Journal of Oil Palm Research. DOI:https://doi.org/10.21894/jopr.2019.0041

Kwon, H. J., Park, B. S., Ayrilmis, N., Oh, W. S. and Kim, H. N. (2013). Effect of carbonization temperature on electrical resistivity and physical properties of wood and wood-based composites. Composites: Part B 46, 102–107. http://dx.doi.org/10.1016/j.compositesb.2012.10.012

Lee, L. C., H'ng, S. P., Paridah, T., Chin, L. K., Khoo, S. P., Nazrin, R. A. R., Asyikin, N. S. and Maminski, M. (2017). Effect of Reaction Time and Temperature on the Properties of Carbon Black Made from Palm Kernel and Coconut Shell. Asian journal of scientific research. 10 (10). 24-33.

Liu, Y., He, Z and Uchimiya, M. (2015). Comparison of Biochar Formation from Various Agricultural By-Products Using FTIR Spectroscopy. Modern Applied Science. 9(4). www.ccsenet.org/mas

Liyanage D. C. and Pieris, M. (2015). A physico-chemical analysis of coconut shell powder. Procedia chemistry. 16. 222-228. www.sciencedirect.com.

Ma, X., Yuan, C. and Liu, X. (2014). Mechanical, Microstructure and Surface Characterizations of Carbon Fibers Prepared from Cellulose after Liquefying and Curing. Materials 7. 75-84; doi:10.3390/ma7010075

Ma, Z., Yang, Y., Ma, Q. Zhou, H., Luo, X., Liu, X. and Wang, S. (2017). Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures. Journal of Analytical and Applied Pyrolysis. http://dx.doi.org/10.1016/j.jaap.2017.07.015

Mochidzuki, K., Soutric, F., Tadokoro, K., Antal, J. M., Toth, M., Zelei, B. and Varhegyi, G. (2003). Electrical and Physical Properties of Carbonized Charcoals. Ind. Eng. Chem. Res. 42, 5140-5151.

Nanda, S., Dalai, K. A., Berruti, F. and Kozinski, A. J. (2015). Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials. Waste Biomass Valor. DOI 10.1007/s12649-015-9459-z

Nandiyanto, A. B. D., Oktiani, R. and Ragadhita, R. (2019). How to Read and Interpret FTIR Spectroscope of Organic Material. Journal of Science & Technology. 4(1).

Nicholas, F. A., Hussein, Z. M., Zaina, Z. and Khadiran, T. (2018). Palm Kernel Shell Activated Carbon as an Inorganic Framework for Shape-Stabilized Phase Change Material. Nanomaterials. 8, 689. doi:10.3390/nano8090689

Noh, C. H. C., Azmin, N. F. M. and Amid, A. (2017). Principal Component Analysis Application on Flavonoids Characterization. Advances in Science, Technology and Engineering Systems Journal (2) 3, 435-440.

Okolo, I. B., Oke, O. E., Agu, M. C., Adeyi, O., Nwoso Obieogu, K. and Akatobi, N. K. (2020). Adsorption of lead(II) from aqueous solution using Africa elemi seed, mucuna shell and oyster shell as adsorbents and optimization using Box–Behnken design. Applied Water Science. 10:201. https://doi.org/10.1007/s13201-020-01242-y

Okoroigwea, E. C. and Saffron, C. M. (2012). Determination of bio-energy potential of palm kernel shell by physicochemical Characterization. Nigerian Journal of Technology (NIJOTECH) 31(3), 329–335.

Rabiu, Z. and Zakaria, A. Z. (2017). Pyrolignous Acid Production from Palm Kernel Shell Biomass. J. Appl. Environ. Biol. Sci., 7(2S). 59-62.

Rana, R., Mu¨ller, G., Naumann, A. and Polle, A. (2008). FTIR spectroscopy in combination with principal component analysis or cluster analysis as a tool to distinguish beech (Fagus sylvatica L.) trees grown at different sites. Holzforschung, 62. 530–538.

Reeves, J. (2012). Mid-infrared spectroscopy of biochars and spectral similarities to coal and kerogens: what are the implications? Appl. Spectr.. 66:689-695. http://dx.doi.org/10.1366/11-06478

Rout, T., Pradhan, D., Singh, R. K. and Kumari, N. (2016). Exhaustive study of products obtained from coconut shell Pyrolysis. J. Environ. Chem. Eng. http://dx.doi.org/10.1016/j.jece.2016.02.024.

Sanguansat, P. (ed.). (2012). Principal component analysis - engineering applications. Intech, Rijeka, Croatia

Satheesh, M., Pugazhvadivu, M., Prabu, B., Gunasegaran, V. and Manikandan, A. (2019). Synthesis and Characterization of Coconut Shell Ash. Journal of Nanoscience and Nanotechnology. 19, 4123–4128. www.aspbs.com/jnn

Štefanko, U. A. and Leszczynska, D. (2020). Impact of Biomass Source and Pyrolysis Parameters on Physicochemical Properties of Biochar Manufactured for Innovative Applications. Frontiers in Energy Research. 8(138), 1-13 doi:10.3389/fenrg.2020.00138

Stein, I.Y., Ashley L. K., Alexander J. C., Luiz A. and Brian L. W. (2017). Mesoscale Evolution of Non-Graphitizing Pyrolytic Carbon in Aligned Carbon Nanotube Carbon Matrix Nanocomposites. Journal of Materials Science 52(24),13799-13811.

Wang, P., Zhang, J., Shao, O., Wang, G. (2018). Physicochemical properties evolution of chars from palm kernel shell pyrolysis. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-018-7185-z(0123456789.

Yahaya, Z. A., Somalua, R. M., Muchtara, A., Sulaimanc, A. S. and Dauda, W. R. W. (2020). Effects of temperature on the chemical composition of tars produced from the gasification of coconut and palm kernel shells using downdraft fixed-bed reactor. Fuel 265. https://doi.org/10.1016/j.fuel.2019.116910

Yang, H., Yan, R., Chen, H., Lee, H. D., Liang, T. D. and Zheng, C. (2006). Mechanism of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & Fuels.20, 1321-1328.

Yashim, M. M., Razali, N., Saadon, N. and Abdul Rahman, N. (2016). Effect of activation temperature on properties of activated carbon prepared from oil palm kernel shell (OPKS). ARPN Journal of Engineering and Applied Sciences.,11(10), 6389- 6392.




How to Cite

Sallau, A. A., Jauro, A., Kolo, A. M., Hassan, U. F., & Ekanem, E. O. (2021). Effect of Carbonization Temperature on Properties of Char from Palm Kernel Shell. Journal of Science and Mathematics Letters, 9(1), 77–88. https://doi.org/10.37134/jsml.vol9.1.7.2021