The Structural, Physical and Optical Properties of Borotellurite Glasses Incorporated with Silica from Rice Husk

Authors

  • Umar Saad Aliyu Department of Physics, Faculty of Science, Federal University Lafia, Nigeria
  • Halimah Mohamed Kamari Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
  • Abdulkarim Muhammad Hamza National Agency for Science and Engineering Infrastructure, Abuja, Nigeria
  • Abdulbaset Abdulla Awshah Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

DOI:

https://doi.org/10.37134/jsml.vol6.4.2018

Keywords:

Cold leaching, Rice husk ash, Borotellurite, Refractive index

Abstract

From the agricultural waste of rice (rice husk), high purity SiO2 with about 98.548 % purity was extracted using a very simple room temperature leaching method. Using the rice husk extracted silicate, a system of silicate borotellurite glasses was fabricated with composition equation [(TeO_2)_0.7 (B_2O_3)_0.3]_1-x (SiO_2)_x with x=0.0, 0.1, 0.2, 0.3 and 0.4. The density and molar volume were measured, and Fourier transform infrared (FTIR), X-ray diffraction (XRD) and UV-Vis analyses were performed on the glasses. Both the density and molar volume decreased and the XRD pattern confirmed the glasses’ amorphous nature. The FTIR showed the presence of TeO_3, TeO_4, BO_3, BO_2O, SiO_4, and H_3BO_3 structural units in the glasses. The concentrations of TeO_3, TeO_4, BO_3 and BO_2O structures were determined by the deconvolution of the FTIR spectra using an Origin software. The optical energy band gap, index of refraction, oxygen packing density (OPD), molar refractive index, metallization criterion and polaron radius were determined for the glasses. Based on the glass transparency, high refractive index value (2.3026 and 2.2937) and metallization criterion (0.4109 and 0.4132) of the glasses with x= 0.1 and 0.2 have potential for fiber and optical non-linear applications.

Downloads

Download data is not yet available.

References

Abdulbaset, A., Halimah, M.K., & Mohd Shah, N. (2017). Effect of neodymium nanoparticles on elastic properties of zinc tellurite glass system. Advanced Materials Science Engineering, 2017, 1-7.

Anand Pandarinath, M., Upender, G., Narasimha Rao, K., & Suresh Babu, D. (2016). Thermal, optical and spectroscopic studies of boro-tellurite glass system containing ZnO. Journal of Non-Crystalline Solids, 433, 60–67.

Awshah, A. A. A. (2017). Effect of neodymium nanoparticles on elastic properties of zinc-tellurite glass system. Advanced Materials and Science Engineering, 2017, 1-7.

Azuraida, A. (2015). Comparative studies of bismuth and barium boro-tellurite glass system: structural and optical properties. Chalcogenide Letters, 12(10), 497–503.

Battisha, I. & El Nahrawy, A. (2012). Physical properties of nano-composite silica-phosphate thin film prepared by sol gel technique. New Journal of Glass Ceramics, 2, 17–22.

Berwal, N., Dhankhar, S., Sharma, P., Kundu, R.S, Punia, S., & Kishore N. (2017). Physical, structural and optical characterization of silicate modified bismuth-borate-tellurite glasses. Journal of Molecular Structure, 1127, 636–644.

Damas, P., Coelho, J., Hungerford, G., & Hussain, N.S. (2012). Structural studies of lithium boro tellurite glasses doped with praseodymium and samarium oxides. Materials Research Bulletin, 47, 3489–3494.

Eevon, C., Halimah, M.K, Zakaria, A., Azurahanim, C.A.C, Azlan, M.N., & Faznny, M.F. (2016). Linear and nonlinear optical properties of Gd3+ doped zinc borotellurite glasses for all-optical switching applications. Results in Physics Journal, 6, 761–766.

El-Mallawany, R. (2005). An Introduction to Tellurite Glasses Module 5 – Optical Properties. Gaafar, M. S., Abdeen, M. A. M., & Marzouk, S. Y. (2011). Structural investigation and simulation of acoustic properties of some tellurite glasses using artificial intelligence technique. Journal of Alloys Compound, 509(8), 3566–3575.

Gayathri Pavani, P. (2011). Optical, physical and structural studies of boro-zinc tellurite glasses. Physica B: Physics Condensed Matter, 406(6–7), 1242–1247.

Gouraud, F., Chotard, T., & Karray, R. (2015). Structural, mechanical and optical investigations in the TeO2-rich part of the TeO2 e GeO2 e ZnO ternary glass system. Solid State Science, 40, 20–30.

Hafiz, M.H.Z, Matori, K.A, Sidek, H.A.A, Zakaria, A., & Mohd Sabri, G.M. (2012). Effect of ZnO on the physical properties and optical band gap of soda lime silicate glass. International Journal of Molecular Science, 13, 7550–7558.

Hasnimulyati, L., Halimah, M. K., Zakaria, A., Halim, S. A., & Ishak, M. A. (2017). Comparative study of the experimental and the theoretical elastic data of Tm3+doped zinc borotellurite glass. Materials Chemistry and Physics Journal, 192, 228–234.

Hesham, A. & Samier, S. (2003). Ultrasonic velocity and elastic moduli of heavy metal tellurite glasses. Materials Chemistry and Physics Journal, 80, 517–523.

Kaur, N. (2015). Optical properties of borotellurite glasses containing metal oxides. AIP Conference Proceedings, 070029, 1–4.

Lakshminarayana, G. (2017). Physical, structural, thermal, and optical spectroscopy studies of TeO2 - B2O3-MoO3-ZnO-R2O (R ¼ Li, Na, and K)/ MO (M ¼ Mg, Ca, and Pb) glasses. Journal of Alloy and Compound, 690, 799-816.

Meena, S.L. & Bhatia, B. (2016). Polarizability and Optical Basicity of Er3+ ions doped zinc lithium bismuth borate glasses. Journal of Pure Applied Ind. Physics, 6(10), 175–183.

Mhareb, M.H.A. (2015). Optical and erbium ion concentration correlation in lithium magnesium borate glass. Optik (Stuttg), 126(23), 3638–3643.

Munoz-Martín, D., Villegas, M. A., Gonzalo, J., & Fernández-Navarro, J. M. (2009). Characterisation of glasses in the TeO2-WO3-PbO system. Journal of European Ceramics Society, 29(14), 2903–2913.

Mustafa, I. S., Ain, N., Azali, N. R, Ibrahim, A. R., Yahaya, Z., & Kamari, H. M. (2015). From Rice Husk to Transparent Radiation Protection Material. Jurnal Intelek, 9(2), 1–6.

Pawar, P.P, Munishwar, S.R, Gautam, S., & Gedam, R.S. (2017). Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED. Journal of Luminescence, 183, 79–88.

Putra, H.S.H.S., Sidek, H.A.A, Halimah, M.K. Matori, A.W., Yusof, M.D.W., & Hafiz M.H.Z. (2013). The effect of remelting on the physical properties of borotellurite glass doped with manganese. International Journal of Molecular Science, 14, 1022–1030.

Rao, Y.R. (2014). Upconversion luminescence in Er3+ / Yb3+ codoped lead bismuth indium borate glasses. International Journal of Recent Dev. Engineering Technology, 3(1), 2347–6435.

Rodriguez, O. (2016). Characterization of silica-based and borate-based, titanium-containing bioactive glasses for coating metallic implants. Journal of Non-Crystalline Solids, 433, 95–102.

Salah, H. A. (2018). Optical properties of zinc lead tellurite glasses. Results in Physics, 9, 1371–1376.

Swapna, K. (2015). Visible, up-conversion and NIR (1.5 m) luminescence studies of Er3+ doped Zinc Alumino Bismuth Borate glasses. Journal of Luminescence, 163, 55–63.

Tanner, D.B. (2013). Optical effects in solids. Department of Physics, University of Florida.

Ugheoke, I. B. & Mamat, O. (2012). A critical assessment and new research directions of rice husk silica processing methods and properties. International Journal Science Technology, 6(3), 430–448.

Umar, S. A., Halimah, M. K., Chan, K. T., & Latif, A.A. (2017). Physical, structural and optical properties of erbium doped rice husk silicate borotellurite (Er-doped RHSBT) glasses. Journal of Non-Crystalline Solids, 472, 31–38.

Umar, S. A., Halimah, M. K., Chan, K. T., & Latif A. A. (2017). Polarizability, optical basicity and electric susceptibility of Er3+ doped silicate borotellurite glasses. Journal of Non-Crystalline Solids, 471, 101–109.

Downloads

Published

2018-12-15

How to Cite

Saad Aliyu, U., Mohamed Kamari, H., Muhammad Hamza, A., & Abdulla Awshah, A. (2018). The Structural, Physical and Optical Properties of Borotellurite Glasses Incorporated with Silica from Rice Husk. Journal of Science and Mathematics Letters, 6, 32–46. https://doi.org/10.37134/jsml.vol6.4.2018