Evaluation of the Effectiveness of the Use of Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Satellites in Studying Land Surface Temperature Values

Penilaian Keberkesanan Penggunaan Satelit Moderate Resolution Imaging Spektroradiometer (MODIS) dan Landsat dalam Mengkaji Nilai Suhu Permukaan Darat

Authors

  • Anak Kemarau Ricky Fakulti Sains Sosial dan Kemanusiaan, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, MALAYSIA
  • Valentine Eboy Oliver Fakulti Sains Sosial dan Kemanusiaan, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, MALAYSIA

DOI:

https://doi.org/10.37134/geografi.vol9.1.3.2021

Keywords:

MODIS, Landsat, Accuracy, Temperature

Abstract

Land Surface Temperature (LST) is identified as one of the important parameters that is constantly observed and recorded by the Earth System Data Record by the National Aeronautics and Space Administration (NASA), the World Meteorological Organization and among other international departments. This is because LST is an important key that influences climate, hydrology, ecology and biochemistry. Remote Sensing technology offers various types of satellites to researchers to study the weather and climate. However, MODIS and Landsat satellites are the second most important satellites in studying soil surface temperatures. The objective of this study was to evaluate the effectiveness of both satellites in measuring surface temperature. To achieve the objectives of this study requires both data through pre-processes such as radiometric, atmospheric and geometric corrections. The next step is to convert the digital value of a number using a formula often used by previous researchers in obtaining temperature values. Temperature data from meteorology from the Malaysian Meteorological Department (MMD) is used in determining the effectiveness of the two data by using the correlation method between the temperature values ​​from MODIS and Landsat satellites with the temperature from MMD. The results suggested that the correlation value between temperatures from the Landsat satellite was higher compared to the MODIS satellite. The results of this study are important as a guide for future researchers, students and stakeholders in making choices in the data for their respective studies.

Downloads

Download data is not yet available.

References

Karnieli, A., Agam, B., Pinker, R. T., Anderson, M., Gutman, G. G., Panov, N., & Goldner, A. (2009). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate, 23 (3), 618 – 633.

Batatia, H., & Bessaih, N. (1997). Satellite land surface temperature for Sarawak area. Dalam Proceedings of the 1997 Asian Conference on Remote sensing. Global Environment Session.

de Beurs, K. M., & Henebry, G. M. (2004). Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sensing of Environment, 89 (4), 497-509. Chatterjee, R. S., Singh, N., Thapa, S., Sharma, D., & Kumar, D. (2017). Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs. International Journal of Applied Earth Observation and Geoinformation, 58, 264 – 277.

Coll, C., Caselles, V., Valor, E., & Niclòs, R. (2012). Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data. Remote Sensing of Environment, 117, 199 – 210.

Dash, P., Göttsche, F. M., Olesen, F. S., & Fischer, H. (2002). Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. International Journal of Remote Sensing, 23 (13), 2563 – 2594.

Garfinkel, C. I., Gordon, A., Oman, L. D., Li, F., Davis, S., & Pawson, S. (2018). Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO. Atmospheric Chemistry and Physics, 18 (7), 4597 – 4615.

Hereher, M. E. (2016). Time series trends of land surface temperatures in Egypt: a signal for global warming. Environmental Earth Sciences, 75 (17), 1 – 11.

Jabatan Perangkaan Malaysia (2011). Banci Penduduk dan Perumahan Malaysia 2010. Wilayah Persekutuan: Putrajaya.

Jiménez-Muñoz, J. C., & Sobrino, J. A. (2009). A single-channel algorithm for land-surface temperature retrieval from ASTER data. IEEE Geoscience and Remote Sensing Letters, 7 (1), 176 – 179.

Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., & Cristóbal, J. (2014). Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geoscience and remote sensing letters, 11 (10), 1840 – 1843.

Kerr, Y. H, Lagouarde, J. P., & Inmbernon, J. (1992). Accurate land surface temperature retrieval from AVHRR data with use of an improved Split Window algorithm. Remote Sensing Environment, 41, 197 – 209.

Kumar, K. S., Bhaskar, P. U., & Padmakumari, K. (2012). Estimation of land surface temperature to study urband heat island effect using landsat ETM + image. International journal of Engineering Science and technology, 4 (2), 771 – 778.

Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote sensing of environment, 131, 14 – 37.

Meyer, H., Katurji, M., Appelhans, T., Müller, M. U., Nauss, T., Roudier, P., & Zawar-Reza, P. (2016). Mapping daily air temperature for Antarctica based on MODIS LST. Remote Sensing, 8 (9), 732.

Muhammad, I. S., Baharun, A., Ibrahim, H. S., & ZB, W. A. W. (2016). Investigation of Ground Temperature for Heat Sink Application in Kuching, Sarawak, Malaysia. Journal of Civil Engineering, Science and Technology, 7 (1), 20 – 29.

NourEldeen, N., Mao, K., Yuan, Z., Shen, X., Xu, T., & Qin, Z. (2020). Analysis of the spatiotemporal change in land surface temperature for a long-term sequence in Africa (2003–2017). Remote Sensing, 12 (3), 488.

Niclòs, R., Galve, J. M., Valiente, J. A., Estrela, M. J., & Coll, C. (2011). Accuracy assessment of land surface temperature retrievals from MSG2-SEVIRI data. Remote Sensing of Environment, 115 (8), 2126 – 2140.

Ozelkan, E., Bagis, S., Ozelkan, E. C., Ustundag, B. B., Yucel, M., & Ormeci, C. (2015). Spatial interpolation of climatic variables using land surface temperature and modified inverse distance weighting. International Journal of Remote Sensing, 36 (4), 1000 – 1025.

Reuter, D. C., Richardson, C. M., Pellerano, F. A., Irons, J. R., Allen, R. G., Anderson, M., ... & Thome, K. J. (2015). The Thermal Infrared Sensor (TIRS) on Landsat 8: Design overview and pre-launch characterization. Remote Sensing, 7 (1), 1135 – 1153.

Ricky, A. K., & Oliver, O. E. (2021). The Impact of El Niño–Southern Oscillation (ENSO) on Temperature: A Case Study in Kuching, Sarawak. Malaysian Journal of Social Sciences and Humanities (MJSSH), 6 (1), 289 – 297.

Ricky, A. K., & Oliver, O. E. (2020). Analyses Water Bodies Effect in Mitigation of Urban Heat Effect: Case Study Small Size Cities Kuching, Sarawak. In IOP Conference Series: Earth and Environmental Science, 540 (1), 012010. IOP Publishing.

Rongali, G., Keshari, A. K., Gosain, A. K., & Khosa, R. (2018). Split-window algorithm for retrieval of land surface temperature using Landsat 8 thermal infrared data. Journal of Geovisualization and Spatial Analysis, 2 (2), 1 – 19.

Sun, D., & Pinker, R. T. (2003). Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES‐8). Journal of Geophysical Research: Atmospheres, 108 (D11).

Tan, J., NourEldeen, N., Mao, K., Shi, J., Li, Z., Xu, T., & Yuan, Z. (2019). Deep learning convolutional neural network for the retrieval of land surface temperature from AMSR2 data in China. Sensors, 19 (13), 2987.

U.S. Environmental Protection Agency, 2020. Dilanggan pada 13 April 2021 di https://www.epa.gov/heatislands

Varentsov, M. I., Grishchenko, M. Y., & Wouters, H. (2019). Simultaneous assessment of the summer urban heat island in Moscow megacity based on in situ observations, thermal satellite images and mesoscale modeling. Geography, Environment, Sustainability, 12 (4), 74 – 95.

Vlassova, L., Perez-Cabello, F., Nieto, H., Martín, P., Riaño, D., & De La Riva, J. (2014). Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sensing, 6 (5), 4345 – 4368.

Wan, Z., & Dozier, J. (1996). A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on geoscience and remote sensing, 34 (4), 892 – 905.

Yu, X., Guo, X., & Wu, Z. (2014). Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote sensing, 6 (10), 9829 – 9852.

Zhou, J., Li, J., Zhang, L., Hu, D., & Zhan, W. (2012). Intercomparison of methods for estimating land surface temperature from a Landsat-5 TM image in an arid region with low water vapour in the atmosphere. International Journal of Remote Sensing, 33 (8), 2582 – 2602.

Zhao, W., He, J., Wu, Y., Xiong, D., Wen, F., & Li, A. (2019). An analysis of land surface temperature trends in the central Himalayan region based on MODIS products. Remote Sensing, 11 (8), 900.

Downloads

Published

2021-06-28

How to Cite

Ricky, A. K., & Oliver, V. E. (2021). Evaluation of the Effectiveness of the Use of Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Satellites in Studying Land Surface Temperature Values: Penilaian Keberkesanan Penggunaan Satelit Moderate Resolution Imaging Spektroradiometer (MODIS) dan Landsat dalam Mengkaji Nilai Suhu Permukaan Darat. GEOGRAFI, 9(1), 41–61. https://doi.org/10.37134/geografi.vol9.1.3.2021

Issue

Section

Articles

Most read articles by the same author(s)