Synthesis and Characterisation of Zinc/Aluminium-Layered Double Hydroxide-L-Phenylalanate Nanocomposites Using Ion Exchange Method

Authors

  • Norhayati Hashim Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
  • Sharifah Norain Mohd Sharif Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
  • Illyas Md Isa Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
  • Noorshida Mohd Ali Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
  • Muhd Ibrahim Muhamad Damanhuri Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia

DOI:

https://doi.org/10.37134/ejsmt.vol4.1.4.2017

Keywords:

Zn/Al-layered double hydroxide, nanocomposite, ʟ-phenylalanine, ion exchange method, drug

Abstract

This study was conducted to synthesise Zn/Al-layered double hydroxide-ʟ-phenylalanate (Zn/Al-LDH-LP) nanocomposite via ion exchange method. The synthesised nanocomposite was characterised using PXRD, FTIR, CHNS, ICP-OES, TGA/DTG and FESEM. The PXRD patterns of the Zn/Al-LDH-LP nanocomposite demonstrate an expansion of interlayer spacing, with a value of 15.8 Å, hence, indicates the successful intercalation of the drug ʟ-phenylalanate into the interlayer gallery of the Zn/Al-layered double hydroxide. The intercalation was also confirmed by the FTIR study which show the appearance of peaks in the FTIR spectra of Zn/Al-LDH-LP that represents the alkyl C‒H stretch, N‒H stretch, antisymmetric and symmetric stretching of COO‾ group. CHNS analysis showed that Zn/Al-LDH-LP nanocomposite contained 37.89% carbon (w/w) and the loading percentage of LP in the Zn/Al-LDH-LP nanocomposite is 57.91% (w/w). The result obtained from the FTIR spectroscopy, CHNS elemental analyser and ICP-OES shows that the Zn/Al-LDH-LP nanocomposite was composed of both Zn/Al-LDH and ʟ-phenylalanate, thus confirmed the occurrence of the intercalation. The thermogravimetric analysis shows that the Zn/Al-LDH-LP nanocomposite possesses better thermal stability than the pristine ʟ-phenylalanine, and occurred in four stages at maximum temperature of 152°C, 242°C, 311°C and 427°C with weight losses of 8.2%, 6.8%, 8.7% and 52.9%, respectively. The chemical formula for Zn/Al-LDH-LP nanocomposite was proposed as [Zn0.71Al0.29(OH)2][C6H5CH2(NH2)COO‾]0.29.1.33H2O. This study demonstrates that the ZLH-LP nanocomposite can be synthesised using the ion exchange method.

Downloads

Download data is not yet available.

References

Oh, J.-M., Park, D.-H., Choi, S.-J., & Choy, J.-H. (2012). LDH Nanocontainers as bio-reservoirs and drug delivery carriers. Recent Patents on Nanotechnology, 6(3), 200–217.

Rives, V., Del Arco, M., & Martín, C. (2013). Layered double hydroxides as drug carriers and for controlled release of non-steroidal antiinflammatory drugs (NSAIDs): A review. Journal of Controlled Release, 169(1-2), 28–39.

Wang, L., Xing, H., Zhang, S., Ren, Q., Pan, L., Zhang, K., … Shi, J. (2013). A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery. Biomaterials, 34(13), 3390–3401.

San Román, M. S., Holgado, M. J., Salinas, B., & Rives, V. (2012). Characterisation of diclofenac, ketoprofen
or chloramphenicol succinate encapsulated in layered double hydroxides with the hydrotalcite-type structure.
Applied Clay Science, 55, 158–163.

Pang, X., Ma, X., Li, D., & Hou, W. (2012). Synthesis and characterization of 10-hydroxycamptothecin -Sebacate - layered double hydroxide nanocomposites. Solid State Sciences, 16, 71–75.

Saifullah, B., Hussein, M. Z., Hussein-Al-Ali, S. H., Arulselvan, P., & Fakurazi, S. (2013). Antituberculosis
nanodelivery system with controlled-relase properties based on para-amino-salicylate-zinc amlunium-layered
double-hydroxide nanocomposites. Drug Des Devel Ther, 7, 1365–1375.

Choy, J. H., Choi, S. J., Oh, J. M., & Park, T. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36(1-3), 122–132. http://doi.org/10.1016/j.clay.2006.07.007

Pu, M., Liu, Y. H., Liu, L. Y., Dong, X. Z., He, J., & Evans, D. G. (2008). Synthesis and structural characterization of mordant yellow 10-pillared magnesium-aluminum layered double hydroxides. Journal of Physics and Chemistry of Solids, 69(5-6), 1084–1087.

Wei, M., Pu, M., Guo, J., Han, J., Li, F., He, J., … Duan, X. (2008). Intercalation of L-dopa into layered double hydroxides: Enhancement of both chemical and stereochemical stabilities of a drug through host - Guest interactions. Chemistry of Materials, 20(16), 5169–5180.

Braterman, P. S., Xu, Z. P., & Yarberry, F. (2004). Layered double hydroxides. In S. M. Auerbach, K. A.Carrado, & P. K. Dutt (Eds.), Handbook of Layered Materials (p. 647). New York: Marcel Dekker.

He, J., Wei, M., Li, B., Kang, Y., Evans, D. G., & Duan, X. (2006). Preparation of Layered Double Hydroxides, (September 2005), 89–119.

Zhou, H., Liao, X., Wang, T., Du, G., & Chen, J. (2010). Enhanced L-phenylalanine biosynthesis by coexpression
of pheAfbr and arowt. Bioresource Technology, 101(11), 4151–4156.

Prabhu, A. A. M., Kumar, G. S. S., Fatiha, M., Sorimuthu, S., & Raj, M. S. (2015). Encapsulation of phenylalanine and 3,4-dihydroxyphenylalanine into β-cyclodextrin: Spectral and molecular modeling studies. Journal of Molecular Structure, 1079, 370–382.

Aisawa, S., Takahashi, S., Ogasawara, W., Umetsu, Y., & Narita, E. (2001). Direct intercalation of amino acids into layered double hydroxides by coprecipitation, 62, 52–62.

Hussein, M. Z., Hashim, N., Yahaya, A., & Zainal, Z. (2011). Synthesis of dichlorprop-Zn/Al-hydrotalcite
nanohybrid and its controlled release property. Sains Malaysiana, 40(8), 887–896.

Barahuie, F., Hussein, M. Z., Arulselvan, P., Fakurazi, S., & Zainal, Z. (2014). Drug delivery system for an
anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct coprecipitation and ion exchange methods. Journal of Solid State Chemistry, 217, 31–41.

Bashi, A. M., Hussein, M. Z., Zainal, Z., Rahmani, M., & Tichit, D. (2012). Simultaneous intercalation and release of 2,4-dichloro- and 4-chloro-phenoxy acetates into Zn/Al layered double hydroxide. Arabian Journal of Chemistry, doi:10.1016/j.arabjc.2012.03.015.

Kee, N. C. S., Arendt, P. D., Tan, R. B. H., & Braatz, R. D. (2009). Selective crystallization of the metastable
anhydrate form in the enantiotropic pseudo-dimorph system of L-phenylalanine using concentration feedback
control. Crystal Growth & Design, 9(7), 3052–3061.

Kura, A. U., Al Ali, S. H. H., Hussein, M. Z., & Fakurazi, S. (2014). Preparation of tween 80-Zn/Allevodopa-layered double hydroxides nanocomposite for drug delivery system. The Scientific World Journal.

Ramachandran, E., & Natarajan, S. (2007). XRD, thermal and FTIR studies on gel grown DL-Phenylalanine
crystals. Crystal Research and Technology, 42(6), 617–620.

Aisawa, S., Izumi, M., Takahashi, S., Hirahara, H., Umetsu, Y., & Narita, E. (2013). Synthesis and thermal
decomposition of phenylalanine intercalated layered double hydroxides. Journal of Chemical Information and
Modeling, 53(9), 1689–1699.

Shulman, G. P., & Simmonds, P. G. (1968). Thermal decomposition of aromatic and heteroaromatic aminoacids.
Chemical Communications (London), (17), 1040–1042.

Fernandez, J. M., Ulibarri, M. A., Labajos, F. M., & Rives, V. (1998). The effect of iron on the crystalline phases formed upon thermal decomposition of Mg – Al – Fe hydrotalcites. Carbon, 8(11), 2507–2514.

Downloads

Published

2017-06-15

How to Cite

Hashim, N., Mohd Sharif, S. N., Md Isa, I., Ali, N. M., & Muhamad Damanhuri, M. I. (2017). Synthesis and Characterisation of Zinc/Aluminium-Layered Double Hydroxide-L-Phenylalanate Nanocomposites Using Ion Exchange Method. EDUCATUM Journal of Science, Mathematics and Technology, 4(1), 24–33. https://doi.org/10.37134/ejsmt.vol4.1.4.2017