Synthesis, Spectroscopic Studies, and Biological Activities of Acylthiourea Derivatives as Potential Anti-Bacteria Agents


  • Wan M. Khairul
  • Aziah Ahmad Ariffin
  • Noraznawati Ismail
  • Adibah Izzati Daud


thiourea, spectroscopic, antibacterial, synthesis, characterisation


Thiourea is known to be a unique class of organic compounds especially acylthiourea since they consist excellent H-bonds donor and acceptor where it has strong ability to form metal complexation with various metal salts. Therefore, six members of acylthiourea derivatives (TH1-TH6) have been successfully synthesized and characterised using selected spectroscopic and analytical methods namely Fourier-Transform Infrared (FT-IR) spectroscopy, UV-visible (UV-vis) spectrophotometer, and CHNS elemental analysis. In turn, all the synthesised TH1-TH6 were used to investigate the anti-bacterial activity towards selected bacteria of both Gram-negative and positive namely Salmonella typhi and Bacillus cereus respectively. TH1-TH6 revealed to have good activity towards S. typhi and B. cereus with specific and broad-range spectrum activity.


Download data is not yet available.


Abbasi, J., Yahyazadeh, A., Mamaghani, M., &Rassa, M. (2013). Regioselective synthesis of novel 3-allyl-2-
(substituted imino) - (3-substituted-2-imino-4-phenyl-3 H -thiazole) derivatives as antibacterial agents. Journal
of Molecular Structure, 1039, 113–118.

Abosadiya, H. M., Hasbullah, S. A., & Yamin, B. M. (2015). Synthesis, X-ray, NMR, FT-IR, UV/vis, DFT and TD-DFT studies of N-(4-chlorobutanoyl)-N′-(2-, 3-and 4-methylphenyl) thiourea derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144, 115-124.

Abosadiya, H. M., Hasbullah, S. A., Yamin, B. M., & Fadzil, A. H. (2014).1-(4-Chlorobutanoyl)-3-(3-chlorophenyl) thiourea. Acta Crystallographica Section E: Structure Reports Online, 70(6), o675-o675.

Ameram, N., & Yamin, B. M. (2013). Synthesis and Characterization O - , M- and Para -Toluyl Thiourea Substituted Para- Pyridine and Ethyl Pyridine as a Chromoionophore. IOSR Journal of Applied Chemistry 4(6), 59–67.

Arslan, H. and Kulcu, N. (2003). Synthesis and characterization of copper (II), nickel (II) complexes with novel
thiourea derivatives. Transition Metal Chemistry 28: 816-819.

Eweis, M., Elkholy, M.M. & Elsabee, M.Z. 2006. Antifungal efficiency of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. International Journal of Biolgical Macromolecules.38: 1-8.

Faidallah, H. M., Khan, K. A., & Asiri, A. M. (2011).Synthesis and biological evaluation of new 3, 5-di (trifluoromethyl)-1, 2, 4-triazolesulfonylurea and thiourea derivatives as antidiabetic and antimicrobial agents.
Journal of Fluorine Chemistry, 132(11), 870-877.

Geng, Z. Z., Zhang, J. J., Lin, J., Huang, M. Y., An, L. K., Zhang, H. B., .. & Chen, W. M. (2015). Novel cajaninstilbene acid derivatives as antibacterial agents. European Journal of Medicinal Chemistry, 100, 235-245.

Golan, D. E. Tashjian, A. H., Armstrong, E. J. (2008). Principles of Pharmacology: The Pathophysiologic Basic of Drug Theraphy. 2nd edition, Wolters Kluwer, Lippincott Williams & Wiikings.

Hadwiger, L. A., Kendra, D. F., Fristensky, B. W., & Wagoner, W. (1986). Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In Chitin in nature and technology (pp. 209-214).Springer US.

Lv, P. C., Li, H. Q., Sun, J., Zhou, Y., & Zhu, H. L. (2010). Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorganic & Medicinal Chemistry, 18(13), 4606-4614.

Pavia, D.L., Lampman, G.M., Kriz, G.S. & Vyvyan, J.R. (2009). Introduction to Spectroscopy.4th Edition. Washington. Brooks/ Cole Thomson Learning

Pete, U. D., Zade, C. M., Bhosale, J. D., Tupe, S. G., Chaudhary, P. M., Dikundwar, A. G., & Bendre, R. S. (2012). Hybrid molecules of carvacrol and benzoyl urea/thiourea with potential applications in agriculture and medicine. Bioorganic & Medicinal Chemistry Letters, 22(17), 5550-5554.

Rodriguez-Fernandez, E., Manzano, J. L., Benito, J. J., Hermosa, R., Monte, E., & Criado, J. J. (2005). Thiourea, triazole and thiadiazine compounds and their metal complexes as antifungal agents. Journal of Inorganic
Biochemistry, 99(8), 1558-1572.

Saeed, A., Shaheen, U., Hameed, A. & Naqvi, S. Z. H. 2009. Synthesis, characterization and antimicrobial activity of some new 1-(fluorobenzoyl)-3- (fluorophenyl) thioureas. Journal of Flourine Chemistry 130: 1028-1034.

Sanabria-Ríos, D. J., Rivera-Torres, Y., Rosario, J., Gutierrez, R., Torres-García, Y., Montano, N., &Carballeira, N. M. (2015). Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances itsantibacterial activity against multi-drug resistant bacteria. Bioorganic & Medicinal Chemistry Letters, 25(22), 5067-5071.

Weiqun, Z., Wen, Y., Liqun, X., Chen, X. (2005). N-Benzoyl-N’-dialkylthiourea derivatives and their Co (iii)
complexes: Structure, and antifungal. Journal of Inorganic Biochemistry 99: 1314-1319.

Zadrazilova, I., Pospisilova, S., Masarikova, M., Imramovsky, A., Ferriz, J. M., Vinsova, J., & Jampilek, J.(2015). Salicylanilidecarbamates: Promising antibacterial agents with high in vitro activity against methicillinresistant Staphylococcus aureus (MRSA). European Journal of Pharmaceutical Sciences, 77, 197-207.




How to Cite

M. Khairul, W., Ariffin, A. A., Ismail, N., & Daud, A. I. (2016). Synthesis, Spectroscopic Studies, and Biological Activities of Acylthiourea Derivatives as Potential Anti-Bacteria Agents. EDUCATUM Journal of Science, Mathematics and Technology, 3(1), 13–19. Retrieved from