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ABSTRACT 

 

In this work, a classical particle that moves on ℝ+ will be investigated by using the affine commutator 

relation which corresponds to the Poisson bracket in classical mechanics where the equation of motions 

and the Newton’s second law will be modified. Two example of physical systems will be studied further 

using the modified Newton’s second law namely free particle and harmonic oscillator. The result 

concludes that for a free particle, the force on ℝ+ is no longer zero and a linear force due positive real 

line and fixed momentum. While, classical dynamics on  ℝ+ for simple harmonic oscillator system is a 

qubic force. 
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1. INTRODUCTION  

 

The positive real line is a configuration space 𝑄 = ℝ+ that restricts a particle to move on 

the (0, ∞) region of the real line ℝ. Quantization on ℝ can be done via canonical quantization, 

where the position 𝑞̂ and momentum 𝑝̂ defined as self-adjoint operators acting on a Hilbert 

space, and satisfy the following canonical commutation relation 
 

                   [𝑞̂, 𝑝̂] = 𝑖ћ,                                                (1) 
 

where ћ is the Planck constant. However, when we proceed to quantize a particle moving on 

ℝ+, apparently the momentum operator 𝑝̂ is no longer self-adjoint operator (Al-Hashimi & 

Wiese, 2021a), and does not qualify as a physical observable. Consequently, canonical 

quantization fails due to the momentum operator is not well-defined on ℝ+. Alternatively, it 

will be replaced by a more appropriate quantum momentum operator which is denoted by 𝜋̂ on 

ℝ+ as it was introduced by affine quantization (Klauder, 1999a).  

Quantum operators in canonical quantization are −∞ < 𝑞̂ < ∞,, and −∞ < 𝑝̂ < ∞, while 

quantum operator for affine quantization is given by 𝑥 > 0 and  −∞ < 𝜋̂ < ∞, which then 

make the affine commutation relation; 
 

       [𝑥, 𝜋̂] = 𝑖ћ𝑥̂.                                (2) 
 

Several works on the affine quantization of a quantum theory on ℝ+ has already been 

widely explored. For example in a quantum system that involves gravity (Isham & Kakas, 1984; 
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Isham, 1984; Klauder, 1999b) a free particle (Gouba, 2020), a particle in a box (Al-Hashimi & 

Wiese, 2021b), covariant scalar field (𝜙4)4 (Riccardo & Klauder, 2021), and oscillator (Gouba, 

2020; Isiaka & Gouba, 2021). Note that, the quantization starts with the classical observables 

in the Poisson bracket to the commutator of the quantum operators. However, there is a lack of 

study in any classical theory of the positive real line. Some authors have developed the classical 

system by defining the symplectic structure which corresponds to the commutation relations. 

For instance, Romero et al. (2003) as well as Acatrinei (2005) studied classical dynamics based 

on the noncommutative space, which was further incorporated with a magnetic field 

background (Acatrinei, 2005; Djemai, 2004). Meanwhile Gao-Feng et al. (2008) delved into 

noncommutative phase space, and Chung (2006) employed the minimal length uncertainty 

principle. These studies collectively revealed that linear extended variables in noncommutative 

systems and minimal length uncertainty principle provide some corrections to the Newton’s 

second law. There exists a notable research gap in the current literature concerning the 

implications of affine commutation relations on classical dynamics. Therefore this study aims 

to bridge this gap by providing a detailed analysis of the classical dynamics based on the affine 

commutation relations, offering a comprehensive solution to the research gap and contributing 

valuable insights, particularly in the context of classical mechanics.   

The purpose of this work is to study a classical particle that moves on ℝ+ using the 

generalized Poisson bracket corresponding to the affine commutation relation (2). The equation 

of motion is used to derive the Newton’s second law, and later will be applied to some examples 

namely a free particle and simple harmonic oscillators. The organization of this paper is such 

in Sec. 2, we derive the equation of motion based on the Poisson brackets corresponding to 

affine commutation relation (2). In Sec. 3 we applied our results in Sec. 2 for some examples, 

and lastly the conclusion is given in Sec. 4.  

 

2. AFFINE CLASSICAL MECHANICS 

 

In the classical limit ћ → 0, the commutator for quantum operator is replaced by the 

Poisson bracket for the corresponding classical variables. Let 𝐴, 𝐵 develops 
 

1

𝑖ћ
[𝐴̂, 𝐵̂] → {𝐴, 𝐵}. 

 

Then the Poisson bracket is consistent with the affine commutation relation (2) is given by 
 

                    {𝑥, 𝜋} = 𝑥.                             (3) 
  

 The affine Poisson bracket (3) can also be obtained from the canonical Poisson 

bracket{𝑞, 𝑝} = 1, by simply manipulating the coordinates 𝑥 → 𝑞 and 𝜋 → 𝑞𝑝 as in (Klauder, 

2012) as follows; 
 

{𝑥, 𝜋} ≡ {𝑞, 𝑞𝑝} = 𝑞{𝑞, 𝑝} = 𝑞 ∙ 1 ≡ 𝑥. 
  

 Geometrically, global coordinates between real line ℝ and positive real line ℝ+ can be 

obtained via diffeomorphism map which denoted by 𝑖∗ and vice versa 𝑗∗, where the canonical 

variable pair (𝑞, 𝑝)  and affine variable pair (𝑥, 𝜋) are linked in the following morphisms 
 

               𝑖∗(𝑞, 𝑝) = (𝑒𝑞 , 𝑒−𝑞𝑝) ≡ (𝑥, 𝜋),                          (4a) 

  𝑗∗(𝑥, 𝜋) = (log 𝑥 , 𝑥−1𝜋) ≡ (𝑞, 𝑝).                        (4b) 
 

 Here, the variable 𝜋 is also known as dilation variable (Klauder, 1999, Gouba, 2020 and 

Isiaka & Gouba, 2021). 
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 Hamiltonian 𝐻(𝑞, 𝑝) function is now replaced by the affine variables (4) by introducing 

𝑝 → √𝛼𝜋  in the Hamiltonian 𝐻(𝑥, 𝜋) such that 
 

                  𝐻(𝑥, 𝜋) = 𝛼
𝜋2

2𝑚
+ 𝑉(𝑥),                 (5) 

 

where the dimension of 𝛼 is [Length]−2. Moreover, the kinetic part in (5) is modified to be as 

𝐾 = 𝛼
𝜋2

2𝑚
 instead of 𝐾 =

1

𝑥2

𝜋2

2𝑚
, while the potential part 𝑉(𝑥) still unchanged.  

 In general, the Hamilton’s equation (equation of motion) of the classical system are 

defined with Hamiltonian 𝐻 as follows; 
 

                                      𝐴̇ ≔ {𝐴, 𝐻}.  
 

Thus the equation of motions becomes; 

 

𝑥̇ = {𝑥, 𝐻} =
𝛼𝜋

𝑚
𝑥,   (6a) 

𝜋̇ = {𝜋, 𝐻} = −𝑥
𝑑

𝑑𝑥
𝑉(𝑥)        (6b) 

 

 The dynamical system is obtained from the doubly Poisson brackets (6a) where the 

acceleration 𝑥̈ is given by 
 

               𝑥̈ = {{𝑥, 𝐻}, 𝐻},                  (7) 

 

and the Newton’s second law 𝐹 = 𝑚𝑥̈ gives 

 

                                                           𝐹 =
𝛼2𝜋2

𝑚
𝑥 − 𝛼𝑥2 𝑑

𝑑𝑥
𝑉(𝑥).                 (8) 

 

The force in terms of the rate of the coordinates (6) becomes 
 

                                                        𝐹 = 𝛼(𝑥̇𝜋 + 𝑥𝜋̇).                  (9) 
 

The result shows that the force on ℝ+ is the rate of xπ as follows 
 

                                                            𝐹 = 𝛼
𝑑

𝑑𝑡
(𝑥𝜋).                                                (10) 

 

This expression provides valuable insights into the relationship between the force and the rate 

of change of the coordinates in this classical system. 

 

3. RESULTS AND DISCUSSION  

 

This work proceeds further with two example of the classical systems such as a free 

particle and harmonic oscillator. 

 

3.1 Free Particle 

 

 Consider the free Hamiltonian where 𝑉(𝑥)  =  0 is given as 
 

                                                             𝐻(𝑥, 𝜋) = 𝛼
𝜋2

2𝑚
.                                                (11) 

 

Thus the equation of motion (6) becomes    
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                                                                𝐹 =
𝛼2𝜋2

𝑚
𝑥.                         (12) 

 

Consequently, the result shows that the force of a free particle along ℝ+ is no longer zero. In 

addition, the result in (12) apparently is a linear force due to positive real line 𝑥 if 𝜋 is a fixed 

variable. 

 

3.2 Harmonic Oscillator 

  

The harmonic oscillator system is a simple example and has been subjected to many 

works. Now, consider the simple harmonic oscillator system for which Hamiltonian is given by 
 

                                                             𝐻(𝑥, 𝜋) = 𝛼
𝜋2

2𝑚
+

𝑚𝜔2

2
𝑥2,                     (13) 

 

with mass 𝑚 and angular frequency 𝜔 of the harmonic oscillator. The equation of motion for 

the case that we are considering is given by; 
 

                          𝐹 =
𝛼2𝜋2

𝑚
𝑥 − 𝛼𝑚𝜔2𝑥3.                     (14) 

 

The result shows that the classical dynamics of the harmonic oscillator system on ℝ+ is a qubic 

equation with fixed momentum 𝜋.  

 For the free particle, the obtained force (12) indicates that when positioned along ℝ+, it 

experiences a non-zero linear force proportional to 𝑥 when 𝜋 is held constant. In the case of the 

harmonic oscillator, the force (14) shows a cubic equation with a fixed momentum 𝜋. These 

results provide valuable insights into the behavior of these systems under the given conditions. 

 

4. CONCLUSION  

 

We have studied the laws of motion of classical particles along the positive real line ℝ+. 

Classical dynamics on ℝ+ for a free particle and simple harmonic oscillator respectively are 

linear force and qubic force due to positive real line 𝑥, which fixed momentum 𝜋. Compare to 

the existing literature, noncommutative systems extend the force variable by some correction 

terms. Furthermore, the study of classical dynamics on ℝ+ is noteworthy that a force emerges 

in the case of the free particle, providing further insights into the intricate dynamics of these 

classical systems on the positive real line. In practice, the application of ℝ+ can be 

geometrically employed to study gravity in systems where the parameter 𝑟 > 0.  
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