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ABSTRACT 

 

The majority of fuzzy time series forecasting (FTSF) algorithms assess forecasting accuracy 

using an error-based distance. The predicted value is defuzzified to a crisp number and the 

error-based distance will be computed. Defuzzification causes some information to be lost, 

which leads to its inability to comprehend the level of uncertainty that has been preserved 

during the forecasting process. This paper proposes an enhanced FTSF model with forecasting 

accuracy developed based on a new hybrid similarity measure combining the centre of gravity 

and area and height. Three properties of the hybrid similarity measure are presented. The FTSF 

model is implemented in the case of the Malaysian unemployment rate. The findings indicate 

that, on average more than 94% of the predicted value was identical to historical data. The 

forecasting accuracy is produced directly from the forecasting value without undergoing the 

defuzzification process, which can preserve some information from being lost.  

 

Keywords: Hybrid Similarity Measure, Fuzzy Time Series Forecasting, Forecasting Accuracy  

 

 

1. INTRODUCTION  

 

Fuzzy time series forecasting (FTSF) model was proposed to overcome the limitation of 

the traditional time series forecasting model that cannot handle linguistic information. Song and 

Chissom (1993, 1994) presented the FTSF model based on discrete fuzzy sets to overcome the 

issue. Many improvements to increase the forecasting accuracy (FA) have been made, such as 

the modification to the types of partition interval method (Singh, 2007; Kuo et al., 2009, Chen 

& Phuong, 2017; Pal & Kar, 2019; Hanif et al., 2023), fuzzy logical relation (FLR) order (Chen, 

2014; Bisht & Kumar, 2016; Tinh & Dieu, 2017; Cheng & Chen, 2018), defuzzification method 

(Ramli & Tap, 2009), and aggregation operator (Gupta & Kumar, 2019). However, the discrete 

fuzzy sets were employed in the aforementioned methods for representing the linguistic terms 
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of the time series data in which the forecasted value (FV) for various levels of confidence cannot 

be produced. 

The evolution of FTSF was continued by Liu (2007, 2009), where he proposed the fuzzy 

numbers to characterise the data’s linguistic term. The FV is in the form of fuzzy numbers and 

therefore the forecasted range at various levels of confidence can be produced. On the other 

hand, the FV were defuzzified to crisp values for determining the FA using the mean square 

error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE) and 

mean absolute error (MAE). As known, the process of defuzzification will cause some 

information that has been kept losing. However, the majority of the FTSF models typically used 

the MSE, RMSE, MAPE, and MAE, such as studies by Chen and Phuong (2017), Alam et al. 

(2021), Solikhin et al. (2022), Khatoon et al. (2023) and Gamayanti et al. (2023). Therefore, 

this paper proposes a hybrid similarity measure combining centre of gravity (COG), and area 

and height in determining the forecasting accuracy. 

 The remaining parts of the paper are organised as follows: the literature review and the 

basic concept of fuzzy numbers and FTSF will be presented in the next section. The new hybrid 

similarity measure with its properties and performance, and the proposed FTSF are presented 

in the following section. The implementation of the proposed FTSF in the data of 

unemployment rate in Malaysia is discussed. The final section contains the conclusion.  

 

2. METHODOLOGY 

 

2.1. Preliminaries  

 

 This section briefly discusses several concepts of trapezoidal fuzzy numbers (Wang, 

1997) and fuzzy time series (FTS) (Song & Chissom, 1993, 1994).  

 
Definition 2.1. (Wang, 1997) 

The membership function of a trapezoidal fuzzy number (TrFN) P = (p1, p2, p3, p4) is as 

follows: 

 

  

1

1

1 2

2 1

2 3

4

3 4

4 3

4

0

1

0







  




  
 
  


 

P

, x p

x p
, p x p

p p

x , p x p

p x
, p x p

p p

, x p

  

 

Definition 2.2. (Song & Chissom, 1993) 
Let Y(t) (t = …, 0,1,2,…) be a subset of ℜ and Y(t) be a universe of discourse described by 

fuzzy set μi(t)(i = 1,2,…), then A(t) is called as FTS on Y(t) (t = …, 0,1,2,…). 

 

Definition 2.3. (Song & Chissom, 1994) 

Let A(t) must be an FTS. A(t) is produced from A(t−1) if there exists a fuzzy relationship 

B(t−1, t) such that A(t) = A(t−1) ⨂ B(t−1, t) whereby ⨂ denotes as a fuzzy operator. 

A(t−1)→A(t) denotes the relationship.  
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Definition 2.4. (Song & Chissom, 1994) 

Given A(t−1) = Ci and A(t) = Cj. The fuzzy logical relationship (FLR) can be described as Ci → 

Cj where Ci  and Cj are the left and right side of FLR, respectively. The FLR can be further 

categorised into the same FLR group, if the FLR on the left side has the same fuzzy set. 

 

2.2 Fuzzy Time Series Forecasting Based On Hybrid Similarity Measure  

 

The procedure of the proposed model of FTSF based on hybrid similarity measure is 

presented as the following algorithm:  

 

Step 1: Define the universe of discourse (UD) of the historical data. The universe of discourse 

is defined as UD = [Mmin – c1, Mmax+ c2] whereby 
min

M  and 
max

M  are the minimum and 

maximum value, respectively, and c1 and c2 are positive real numbers. 

Step 2: Partition the UD with the same length in m intervals 
1 2 3 mu ,u ,u ,...,u .  

Step 3: Calculate the data frequency in the interval ui. Based on their frequency level, categorise 

and subpartition intervals. The interval with the most frequency is categorised as Class 1 and is 

divided into four sub-intervals. Other detailed classification of intervals is shown in Table 1. 

List all new sub-intervals as 
1 2 3 nv ,v ,v ,...,v  with  1 1 2v d ,d   ,  2 2 3v d ,d , …,  1n n nv d ,d  . 

 

Table 1. Category of Sub-interval 

Frequency Level of the Interval Class Number of Sub-interval with equal length 

Largest 1 4 

Second largest 2 3 

Third largest 3 2 

Fourth largest and above 4 1 

 

Step 4: Define the TrFNs W1, W2, …, Wn-1, Wn as follows: 

W1 = (d0,d1,d2,d3),   W2 = (d1,d2,d3,d4),  

  
Wn–1= (dn–2,dn–1, dn, dn+1),       Wn = (dn–1, dn, dn+1, dn+2). 

Step 5: The historical data, Mt is fuzzified. The historical data Mt belongs to TrFN Wk if the 

value of Mt falls in the sub-interval of vk. 

Step 6: Develop the FLR based on Definition 2.4: “If the fuzzy production of time t-1 is Wj, 

then the fuzzy production of time t is Wk”, thus, the FLR is labeled as j kW W . 

Step 7: Develop the FLR groups. The FLR is arranged based on the same TrFN on the left-

hand side of the FLR. The following are the FLR groups. 

 Group 1: 1i jW W , 2i jW W , , i jpW W  

 Group 2: 1j kW W , 2j kW W , , j kpW W  

 Group n: 
1n lW W , 

2n lW W , , n lpW W  

Step 8: Compute the forecasted value, FVt in the form of TrFNs based on heuristic rules (Cheng 

et al., 2008) as follows: 

 If the FLR group of Wi   is 
iW  , then 

t iFV W . 

 If the FLR group of Wi   is i jW W , then t jFV W . 

 If the FLR group of Wi is 1i jW W , 2i jW W , , i jpW W , then 

1 2j j jp

t

W W W
FV

p

  
 . 
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Step 9: Calculate the similarity of FVt and Wt (S(FVt, Wt)) by using the proposed hybrid 

similarity measure in Definition 3.1, with Wt  is the fuzzy value of Mt. 

 

3. RESULTS AND DISCUSSION 
 

3.1. Hybrid Similarity Measure  

 

 A hybrid similarity measure based on similarity measure combining of COG (Xu et al., 

2010), and area and height (Patra & Mondal, 2015) is presented in this section. 

 
Definition 3.1. 

Let  1 2 3 4 PP p , p , p , p ;h  and  1 2 3 4 QQ q ,q ,q ,q ;h  be two generalized TrFNs. The degree of 

similarity between P and Q is defined as 
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The higher the S(P,Q) value, the higher the likeness between TrFNs P and Q. 

 

The proposed hybrid similarity measure has three properties as follows: 

 

Property 3.1. S(P,Q) = 1 if and only if P = Q. 

 

Proof: If S(P,Q) = 1, then by Definition 3.1 
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This implies 
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     0   P Qar P ar Q h h   whereby p1 = q1, p2 = q2, p3 = q3, p4 = q4, 
* *
P Qy y ,  * *

P Qx x , 

ar(P) = ar(Q) and hP = hQ. Thus, P = Q. On the other hand, if P and Q are identical, then, p1 = 

q1, p2 = q2, p3 = q3, p4 = q4 and hP = hQ. There are * *

P Qy y , * *

P Qx x ,   0d P,Q , 
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p q  and ar(P) = ar(Q). This gives the degree of similarity 

between  P and Q as S(P,Q) = 1. 

 

Property 3.2. S(P,Q) = S(Q,P) 

 

Proof: By Definition 3.1, 
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Property 3.3. If P = (p, p, p, p; 1) and Q = (q, q, q, q; 1), then  
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Definition 3.1 calculates the similarity of P and Q as: 
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3.2. Performance of the Hybrid Similarity Measure  

 

The performance of the hybrid similarity measure is compared in this section with those 

of Hsieh and Chen (1999), Chen and Chen (2001), Xu et al. (2010), Hejazi et al. (2011) and 

Patra and Mondal (2015) approaches. For comparison, ten sets of TrFNs P and Q from Xu et 
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al. (2010) and Patra and Mondal (2015) are used. The TrFNs are as follows: 

 

Set 1: P = (0.10, 0.20, 0.30,0.40; 1), Q = (0.10, 0.25, 0.25, 0.40; 1) 

Set 2: P = (0.10, 0.20, 0.30,0.40; 1), Q = (0.10, 0.25, 0.25, 0.40; 0.2) 

Set 3: P = (0.10, 0.20, 0.30,0.40; 1), Q = (0.10, 0.35, 0.35, 0.50; 0) 

Set 4: P = (0.10, 0.25, 0.25,0.40; 0.01), Q = (0.10, 0.25, 0.25, 0.40; 0) 

Set 5: P = (0.10, 0.20, 0.30,0.40; 1), Q = (0.10, 0.20, 0.30,0.40; 1) 

Set 6: P = (0.10, 0.20, 0.30,0.40; 0), Q = (0.10, 0.20, 0.30,0.40; 0) 

Set 7: P = (0.10, 0.20, 0.30,0.40; 1), Q = (0.30, 0.45, 0.45,0.60; 1) 

Set 8: P = (0.10, 0.20, 0.30,0.40; 0), Q = (0.30, 0.40, 0.50,0.60; 1) 

Set 9: P = (0.10, 0.20, 0.30,0.40; 0.8), Q = (0.20, 0.30, 0.40,0.50; 0.4) 

Set 10: P = (0.10, 0.20, 0.30,0.40; 0.8), Q = (0.30, 0.45, 0.54,0.60; 0.6) 

 

Table 2 shows the performance of the hybrid method compared to others. For Sets 1 and 

2, the degree of similarity (DoS) by Hsieh and Chen (1999) method is equal to one, which 

means that the two TrFNs are equal. However, the membership functions of P and Q are not 

equal, and the DoS will not be equal to one. The proposed method produces the value of DoS 

not equal to one, which is consistent with the membership function. 
 

Table 2. Comparison of Performance of the Proposed Method 

TrFNs 
Hsieh & 

Chen (1999) 

Chen & 

Chen (2001) 

Xu et al. 

(2010) 

Hejazi et 

al. (2011) 

Patra & 

Mondal (2015) 

Proposed  

Hybrid 

Method 

Set 1 1 0.8357 0.9627 0.9004 0.9506 0.9151 

Set 2 1 0.1671 0.8434 0.0644 0.5021 0.4235 

Set 3 0.9231 - 0.7704 0 0.36 0.2773 

Set 4 1 - 0.9985 0 0.9943 0.9928 

Set 5 1 1 1 1 1 1 

Set 6 1 - 1 - 1 1 

Set 7 0.8571 0.5486 0.8072 0.7407 0.78 0.6296 

Set 8 0.8571 0.64 0.8126 0.8 0.8 0.6501 

Set 9 0.9231 0.6075 0.8933 0.2624 0.684 0.6110 

Set 10 0.8571 0.48 0.8057 0.4783 0.708 0.5704 

 

  

Figure 1. Set 3 TrFNS Figure 2. Set 4 TrFNS 

                                 

 Chen and Chen (2001) cannot provide the DoS for Sets 3 and 4. This is due to the 

weaknesses of the method that was unable to calculate the TrFN with height zero (TrFN Q has 

height zero for Sets 3 and 4). Hejazi et al. (2011) method produced DoS equal to zero for Sets 

3 and 4, while Hshieh and Chen (1999) gave equal to one for Set 4. The values of DoS are not 

consistent with the graphical representation as in Figures 1 and 2. The proposed method gives 

better results that are consistent with the graphical representation. For Set 5, all methods in 

Table 1 produced DoS equal to one and this is true since the two TrFNs are equal. However, 

although the two TrFNs are equal for Set 6, Chen and Chen (2001) and Hejazi et al. (2011) 

failed to calculate the similarities. Chen and Chen’s (2011) method was unable to calculate the 
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cases if any one of the TrFN has height zero and Hejazi et al.’s (2011) method was unable to 

calculate the TrFNs with both height zeros. The proposed method produces consistent results 

since the TrFNs in sets 5 and 6 are equal. For all sets of TrFNs (except Sets 5 and 6), the DoS 

of the hybrid method is lower than the methods by Xu et al. (2010) and Patra and Mondal 

(2015). The similarity measure of the hybrid method is the combination of both methods (Xu 

et al., 2010; Patra & Mondal, 2015) through a multiplication operation. Thus, if one of the 

methods or both methods have DoS less than one, then the DoS of the hybrid method will be 

less than the DoS of each method. However, the DoS of the hybrid method will be equal to one 

if both methods have DoS equal to one. 

 
3.3. Numerical Example 

 

The proposed FTSF model with hybrid similarity measure is implemented in Malaysia’s 

unemployment rate data. Figure 3 shows Malaysia’s unemployment rate from 1982 to 2013 

(Department of Statistic Malaysia, 2014). 

 

 
Figure 3. The Malaysian unemployment rate data for 1982 to 2013 

 

Step 1: From the unemployment rate data, Mmin = 2.4% and Mmax = 7.4%. By assigning two 

numbers c1 = 0.4 and c2 = 0.6,  2 0 8 0UD . , . . 

Step 2: UD is divided into eight equal lengths, u1=[2.00,2.75], u2=[2.75,3.50], u3=[3.50,4.25], 

u4=[4.25,5.00], u5=[5.00,5.75], u6=[5.75,6.50], u7=[6.50,7.25], u8=[7.25,8.00]. 

Step 3: The frequency, classification, and number of sub-intervals are shown in Table 3. 

 
Table 3. The Number of Sub-Interval for Each Interval for Unemployment Rate 

Interval Frequency Class Number of Sub-interval  

u1=[2.00,2.75] 2 3 2 

u2=[2.75,3.50] 16 1 4 

u3=[3.50,4.25] 7 2 3 

u4=[4.25,5.00] 2 3 2 

u5=[5.00,5.75] 2 3 2 

u6=[5.75,6.50] 0 4 1 

u7=[6.50,7.25] 1 4 1 

u8=[7.25,8.00] 2 3 2 

 

From Table 3, interval u2 has the highest frequency followed by u3. Thus, u2 and u3 are 

categorised as Class 1 and Class 2 with 4 and 3 sub-intervals respectively. The sub-intervals for 

u2 = [2.75, 3.50] are [2.75, 2.938], [2.938, 3.125], [3.125, 3.313] and [3.313, 3.5], and the sub-

intervals for u3 = [3.50, 4.25] are [3.5, 3.75], [3.75, 4.00] and [4.00, 4.25]. Intervals u1, u4, u5 

and u8 have the third highest frequency and categorised as Class 3 with 2 sub-intervals.  The 

sub-intervals for u1 = [2.00, 2.75] are [2.00, 2.375] and [2.375, 2.75], sub-intervals for u4 = 

[4.25, 5.00] are [4.25, 4.625] and [4.625, 5.00], sub-intervals for u5 = [5.00, 5.75] are [5.00, 

5.375] and [5.375, 5.75], and sub-intervals for u8 = [7.25, 8.00] are [7.25, 7.625] and [7.625, 
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8.00]. u7 and u6 are categorised as Class 4 and the sub-interval remains the same as [6.5,7.25] 

and [5.75,6.5] respectively. Thus, in total, there are 17 new sub-intervals obtained, and by 

arranging them, the sub-intervals are given as follows:  

v1=[2.00,2.375]  

v2=[2.375,2.75]  

v3=[2.75,2.938]  

v4=[2.938,3.125]  

v5=[3.125,3.313]  

v6= [3.313,3.5] 

v7=[3.5,3.75] 

v8=[3.75,4.00] 

v9=[4.00,4.25] 

v10=[4.25,4.625]  

v11=[4.625,5.00] 

v12=[5.00,5.375] 

v13=[5.375,5.75]  

v14=[5.75,6.5] 

v15=[6.5,7.25]  

v16=[7.25,7.625] 

v17=[7.625,8.00] 

 

Step 4: The unemployment rates in the form of TrFNs are as follows: 

W1 = (1.625, 2.00, 2.375, 2.75), W2 = (2.00, 2.375, 2.75, 2.938),  

W3 = (2.375, 2.75, 2.938, 3.125), W4 = (2.75, 2.938, 3.125, 3.313),  

W5 = (2.938, 3.125, 3.313, 3.5), W6 = (3.125, 3.313, 3.5, 3.75)  

W7 = (3.313, 3.5, 3.75, 4.00),  W8 = (3.5, 3.75, 4.00, 4.25) 

W16 = (6.50, 7.25, 7.625, 8.00),   W17 = (7.25, 7.625, 8.00, 8.375) 

 

Step 5: Table 4 shows the years 2005 to 2013 fuzzified unemployment rate. 

 
Table 4. Fuzzified Rate of Unemployment in TrFNs Form for the years 2005 to 2013 

Year Unemployment rate TrFNs Year Unemployment rate TrFNs 

2005 3.5 W6 2010 3.3 W5 

2006 3.3 W5 2011 3.2 W5 

2007 3.2 W5 2012 3.0 W4 

2008 3.3 W5 2013 3.1 W4 

2009 3.7 W7    

 

The unemployment rate for the year 2005 is 3.5%, thus, it falls under sub-interval v6 and 

it belongs to TrFN W6. Similarly, the unemployment rates for the years 2006, 2007, 2008, 2010, 

and 2011 are 3.3%, 3.2%, 3.3%, 3.3% and 3.2% respectively, thus, they fall under sub-interval 

v6 and belong to TrFN W6.  

 

Steps 6-7: Table 5 shows the unemployment rate FLR group. 
 

Table 5. Unemployment Rate FLR Group 

Group FLR Group FLR 

1 W2→ W2, W2→ W5 8 W10→ W7, W10→ W 9 

2 W4→ W2, W4→ W2, W4→ W2 9 W11→ W13 

3 W5→ W4, W5→ W5, W5→ W6, W5→ W7 10 W13→ W10, W13→ W16 

4 W6→ W4, W6→ W5, W6→ W6, W6→ W7, W6→ W8 11 W15→ W13 

5 W7→ W4, W7→ W5, W7→ W6, W7→ W9 12 W16→ W15, W16→ W16 

6 W 8→ W 11 13 W4→ϕ 

7 W 9→ W 7   

 

Step 8: The forecast value FVt is calculated on the basis of the heuristic rules. Table 6 shows 

the FVt values for the years 1983 to 2013.  
Table 6. Fuzzy Historical and Fuzzy Forecasted for the Year 1983 to 2013 

Year 
Fuzzy historical 

data (Wt)  
Fuzzy forecasted 

(FVt) 
Year 

Fuzzy historical 

data (Wt)   
Fuzzy forecasted 

(FVt) 

1983 (3.5, 3.75, 4, 4.25) 
(3.125, 3.325, 3.538, 

3.763) 
1999 

(3.125, 3.313, 3.5, 

3.75) 
(3.031, 3.219, 3.422, 

3.641) 
1984 (4.25, 4.625, 5, (4.25, 4.625, 5, 2000 (2.75, 2.938, 3.125, (3.125, 3.325, 3.538, 
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5.375) 5.375) 3.313) 3.763) 

1985 (5, 5.375, 5.75, 6.5) (5, 5.375, 5.75, 6.5) 2001 
(3.125, 3.313, 3.5, 

3.75) 
(2.625, 2.875, 3.125, 

3.333) 

1986 (6.5, 7.25, 7.625, 8) 
(5.25, 5.75, 6.125, 

6.5) 
2002 

(3.125, 3.313, 3.5, 

3.75) 
(3.125, 3.325, 3.538, 

3.763) 

1987 (6.5, 7.25, 7.625, 8) 
(6.125, 6.875, 7.438, 

7.813) 
2003 (3.313, 3.5, 3.75, 4) 

(3.125, 3.325, 3.538, 

3.763) 

1988 
(5.75, 6.5, 7.25, 

7.625) 
(6.125, 6.875, 7.438, 

7.813) 
2004 

(3.125, 3.313, 3.5, 

3.75) 
(3.141, 3.344, 3.547, 

3.797) 

1989 (5, 5.375, 5.75, 6.5) (5, 5.375, 5.75, 6.5) 2005 
(3.125, 3.313, 3.5, 

3.75) 
(3.125, 3.325, 3.538, 

3.763) 

1990 (4, 4.25,   4.625, 5) 
(5.25, 5.75, 6.125, 

6.5) 
2006 

(2.938, 3.125, 

3.313, 3.5) 
(3.125, 3.325, 3.538, 

3.763) 

1991 
(3.75, 4, 4.25, 

4.625) 
(3.75, 4, 4.25, 4.625) 2007 

(2.938, 3.125, 

3.313, 3.5) 
(3.031, 3.219, 3.422, 

3.641) 

1992 (3.313, 3.5, 3.75, 4) (3.313, 3.5, 3.75, 4) 2008 
(2.938, 3.125, 

3.313, 3.5) 
(3.031, 3.219, 3.422, 

3.641) 

1993 
(3.75, 4, 4.25, 

4.625) 
(3.141, 3.344, 3.547, 

3.797) 
2009 (3.313, 3.5, 3.75, 4) 

(3.031, 3.219, 3.422, 

3.641) 

1994 (3.313, 3.5, 3.75, 4) (3.313, 3.5, 3.75, 4) 2010 
(2.938, 3.125, 

3.313, 3.5) 
(3.141, 3.344, 3.547, 

3.797) 

1995 
(2.75, 2.938, 3.125, 

3.313) 
(3.141, 3.344, 3.547, 

3.797) 
2011 

(2.938, 3.125, 

3.313, 3.5) 
(3.031, 3.219, 3.422, 

3.641) 

1996 
(2, 2.375, 2.75, 

2.938) 
(2.625, 2.875, 3.125, 

3.333) 
2012 

(2.75, 2.938,3.125, 

3.313) 
(3.031, 3.219, 3.422, 

3.641) 

1997 
(2, 2.375, 2.75, 

2.938) 
(2.469, 2.75, 3.031, 

3.219) 
2013 

(2.75, 2.938,3.125, 

3.313) 
(2.625, 2.875, 3.125, 

3.333) 

1998 
(2.938, 3.125, 

3.313, 3.5) 
(2.469, 2.75, 3.031, 

3.219) 
   

  

Step 9: The hybrid similarity measure is computed based on the normalized Wt and FVt as 

shown in Table 7. Table 7 shows that the DoS is equal to one for the years 1984, 1985, 1989, 

1991, 1992, and 1994. It shows that 19.4% of the FV is similar to the actual values. 93.5% of 

the FV is more than 85% similar and on average the FV has 94.3% similar to the actual values. 

The results demonstrate that the FV is quite close to the actual data. 
 

Table 7. The Hybrid Similarity Measure for Unemployment Rate 

Year Similarity Year Similarity Year Similarity 

1983 0.913 1994 1 2004 0.992 

1984 1 1995 0.916 2005 0.994 

1985 1 1996 0.901 2006 0.955 

1986 0.736 1997 0.926 2007 0.977 

1987 0.936 1998 0.926 2008 0.977 

1988 0.936 1999 0.981 2009 0.937 

1989 1 2000 0.920 2010 0.951 

1990 0.735 2001 0.914 2011 0.977 

1991 1 2002 0.994 2012 0.941 

1992 1 2003 0.958 2013 0.985 

1993 0.863     

Average: 0.943 

4. CONCLUSION  

 

This paper proposes a FTSF model based on hybrid similarity measure. The FA of the 

enhanced FTSF model is given in the form of DoS. Three properties of the hybrid similarity 

measure are presented. The hybrid similarity measure outperforms some of the previous studies 

in terms of consistency with the membership function and graphical presentation, and ability to 
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calculate the similarity of TrFNs with height zero. The FTSF model with forecasting accuracy 

developed based on hybrid similarity is able to preserve some information at various levels of 

confidence.  
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