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ABSTRACT 

 

The objectives are to derive the stability analysis theoretically and to set up the stability analysis 

numerically for radiation effects on Marangoni convection boundary layer over a permeable 

surface. The stability analysis is used to determine which branch solutions are stable and 

physically realisable. The stability can be tested via the smallest eigenvalue. Negative smallest 

eigenvalue produces an initial growth of disturbance and the flow becomes unstable. In contrast, 

the positive smallest eigenvalue results in an initial decay of the disturbance, thus the flow is 

stable. The research has an implication in order to identify which solution is stable, whether the 

first or the second solution. 
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1. INTRODUCTION 

 

 An excellent review on the Marangoni flow has been done by Tadmor (2009). Al-Mudhaf 

and Chamkha (2005) have studied the effects of heat generation/absorption on thermosolutal 

Marangoni convection with a first-order chemical reaction in the presence of suction/injection. 

Magyari and Chamkha (2008) obtained exact analytical solutions for the problem of steady 

thermosolutal magnetohydrodynamic Marangoni boundary layer flow. The non-unique 

solutions of Marangoni boundary layer have been obtained by Arifin et al. (2011) where the 

dual solution exists if a constant exponent   < 0.5. This result is consistent with the discussion 

given in Golia and Viviani (1986). Hamid et al. (2011a) have extended the problem of Pop et 

al. (2001) in the case of permeable surface and they also found the dual solution and the 

velocity, temperature, and concentration profiles will decrease with suction whereas injection 

shows the opposite effects. Thermal radiation effect on convection is essential in high-

temperature processes and has many applications such as space technology, nuclear reactor 

cooling systems, and geothermal engineering. There is a lot of work on boundary layer flow 

involving radiation such as Bataller (2008), Ishak (2010), and Hamid et al. (2011b) where the 

existence of thermal radiation is to reduce the heat transfer rate at the surface. Due to the 

existence of dual solutions in a selected range of parameters, an analysis of stability is set up in 

order to determine the most stable solution between the two solutions by finding the smallest 
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eigen value (Awaludin et al., 2016). The research objectives are (1) to derive the stability 

analysis theoretically to radiation effects on Marangoni convection boundary layer over a 

permeable surface, (2) to set up the stability analysis numerically to radiation effects on 

Marangoni convection boundary layer over a permeable surface.  

 

2. METHODOLOGY  

 

 Under the usual boundary layer approximation, the basic governing equations are the 

continuity equations:         

0,
u v

x y

 
 

 
                      Eq. 1 

 

momentum equation: 
2
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                 Eq. 2 

 
energy equation with the effect of radiation:  

2
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u v
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                 Eq. 3 

 

In order to perform a stability analysis, we consider the unsteady problem. Eq. 1 holds, while 

Eqs. 2 and 3 are replaced by: 

 

unsteady state of momentum equation: 
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                 Eq. 4 

 

and the unsteady state of energy equation: 
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               Eq. 5 

 

where t  corresponds to time. Because of the time existence, the boundary conditions are now 

changed to: 

 

0 : 0, for any , ,t u v T T x y     

1 10 : , , +  at 0,w w

u T
t u cx L v v T T D y

y y

 
     

 
 

, as .eu U ax T T y                     Eq. 6 

 

where c is shrinking/stretching constant, L1 is the velocity slip factor, vw is velocity of suction 

if vw < 0 or injection if vw > 0, Tw is temperature of the sheet, D1 is thermal slip factor and a is 

the positive straining rate parameter.  
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We introduce a new variable  , where    is a dimensionless variable for time t. The similarity 

variables now can be rewritten as: 

  , , , ,
w

T T a
a xf y at

T T
     







   


               Eq. 7 

 

where   is the similarity variable and   is a stream function, which is defined as: 

, .u v
y x
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                   Eq. 8 

 

Variable   now can be reduced to: 
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                               Eq. 9 

  

While variable   can be reduced to: 
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Equations 2 and 3 now take the following form: 
23 2 2

3 2
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              Eq. 11 
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                Eq. 12 

 

where the boundary conditions in Eq. 6 now become: 
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To test the stability of the steady flow solution 
0( ) ( )f f   and 

0( ) ( )     satisfying the 

boundary value problems in Eq. 2 and 3 as suggested by Awaludin et al. (2016): 
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where   is an unknown eigenvalue, and ( )F   and G( )  are the small relatives of 
0 ( )f   and 

0( )  . We differentiated Eq. 14 with respect to   and  (Bakar, 2018; Merkin et al., 2022); 

inserting into Eq. 11 and 12, we find the linearized problem: 
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             Eq. 15 
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                 Eq.16 

 

with the boundary conditions: 
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The functions 
0( )F F   and 

0( )G G  in Eq. 15 and 16 identify the initial growth or decay 

of the solution as in Eq. 14. Hence, the following unknown linear eigenvalues should be 

considered in order to solve the corresponding numerical methods, which are: 
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subjected to boundary conditions: 

     0 0 00 0, 0 0, 0 0,F F G    
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The analysis of stability for the corresponding problems of 
0 ( )f   and 

0( )   are determined by 

smallest eigenvalues   for selected values of involving parameters such as radiation parameter 

Rd, Prandtl number Pr, suction parameter S, shrinking parameter   and slip parameter   and 

 , corresponding to velocity and thermal slip, respectively. 

 

3. RESULTS AND DISCUSSION  

 

 Marangoni convection boundary layer flow in the presence of thermal radiation with 

suction/injection effects are analyzed numerically by Mat et al. (2013). The effects of thermal 

radiation parameters and the suction/injection parameter on the temperature profiles were 

presented in graphical form and thoroughly examined. The governing equations were 

transformed into ordinary differential equations using appropriate transformations and were 

then solved numerically by the shooting method. Comparisons with Hamid et. al (2011a) are 

performed and the results are in excellent agreement. It was found that the solutions for the 

constant exponent or the similarity parameter  < 0.5 were non-unique (dual solution). Results 

show that the dual solution exists for a certain range of the governing parameters. It could be 
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drawn from the present results that when the radiation parameter increased, the heat transfer 

rate at the surface decreased. It was also shown that the imposition of suction was to decrease 

the surface temperature gradient, whereas injection showed the opposite effects. The solution 

is unstable if the value of the smallest eigenvalue is negative, while it is stable if the smallest 

eigenvalue vice versa. 

 

4. CONCLUSION 

 

 In order to determine which of these solutions are physically realisable in practice, we 

have derived the stability analysis theoretically. The stability of the flow can be tested by 

looking at the polarity of the smallest eigenvalue itself. A stability analysis has been set up 

numerically to show that the upper branch solutions are stable and physically realizable, while 

the lower branch solutions are not stable and, therefore, not physically possible. 
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