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Abstract

The main aim of this article is to investigate the application of the quarter-sweep iteration 
in solving linear Fredholm integral equations of the second kind. The effectiveness of the 
quarter-sweep iteration concept with Gauss-Seidel iterative method, known as the Quarter-
Sweep Gauss-Seidel (QSGS), by using quarter-sweep approximation equation based on 
quadrature scheme to solve the problem is examined. In addition, the formulation and 
implementation of the proposed method are also presented. Some numerical simulations 
are carried out to show that the proposed method is superior compared to the standard 
method.

Keywords Linear Fredholm equations; Quarter-sweep iteration, Quadrature, Gauss-
Seidel

Abstrak

Tujuan utama makalah ini ialah untuk mengkaji aplikasi lelaran sapuan sukuan dalam 
menyelesaikan masalah persamaan kamiran Fredholm linear jenis kedua. Keberkesanan 
konsep sapuan sukuan dengan kaedah lelaran Gauss-Seidel, juga dikenali sebagai Gauss-
Seidel Sapuan Sukuan (QSGS), dengan menggunakan persamaan penghampiran berdasarkan 
skema kuadratur untuk menyelesaikan masalah telah dikaji. Sebagai tambahan, formulasi 
dan pelaksanaan kaedah dicadangkan juga ditunjukkan. Beberapa simulasi berangka juga 
telah dijalankan untuk menunjukkan kaedah dicadangkan adalah lebih baik jika dibandingkan 
dengan kaedah piawai.

Kata Kunci Persamaan Fredholm linear, Lelaran sapuan sukuan, Kuadratur, Gauss-
Seidel 
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Introduction

In this article, we consider the numerical solution of Fredholm integral equations of the 
second kind

, , ,y x K x t y t dt f x a b 0!m mC- = =
C

^ ^ ^ ^h h h h 6 @# 			   ...(1)

where the parameter λ, kernel K L2 #! C C^ h and free term f L! C^ h are given, and 
y L! C^ h is the unknown function to be determined. The kernel function ( )txK ,  is 
assumed to be absolutely integrable and satisfy other properties that are sufficient to imply 
the Fredholm alternative theorem as mentioned in Theorem 1 and Definition 1. Meanwhile, 
(1) also can be rewritten in the equivalent operator form

y fm l- =^ h .								       ...(2)

Theorem 1 (Fredholm Alternative) (Atkinson, 1997)
Let \  be a Banach space and let : "l \ \  be compact. Then the equation ,y f 0!m l m- =^ h  
has a unique solution x ! \  if and only if the homogeneous equation z om l- =^ h  has 
only the trivial solution 0=z . In such a case, the operator :

onto

1 1
"m l \ \-
-  has a bounded 

inverse 1m l- -^ h .

Definition 1 (Compact operators) (Atkinson, 1997)
Let \  and Y be normed vector space and let : Y"l \  be linear. Then l is compact if the 
set x x x 1#l" , has compact closure in Y. This is equivalent to saying that for every 
bounded sequence xn 1 \" , , the sequences xnl" , has a subsequence that is convergent to 
some point in Y. Compact operators are also called completely continuous operators.

	 In many application areas, numerical approaches were used widely to solve Fredholm 
integral equations. By solving (2) numerically, we either seek to determine an approximate 
solution in a chosen finite dimensional space nV  by a projection method (Kaneko, 1989; 
Chen et al., 2002; Maleknejad & Kajani, 2003; Asady et al., 2005; Kajani & Vencheh, 2005; 
Xiao et al., 2006; Chen et al., 2007; Long & Nelakanti, 2007; Oladejo et al., 2008)

P y P fn n nm l- =^ h 							       ...(3)

where Y Vn n!  and :P C Vn n"  is a projection operator, or use the quadrature method

I y fn nm l- =^ h 				    ...(4)

where nl  approximates l and is obtained by discretisation of  l by an n  point quadrature 
method; see Laurie (2001), Lin (2003) and, Muthuvalu and Sulaiman (2008; 2009). Such 
discretisations of integral equations lead to dense linear systems and can be prohibitively 
expensive to solve as n , the order of the linear system of linear algebraic equations, 
increases. For large systems, iterative methods are preferred than direct methods because 
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iterative methods often yield a solution within an acceptable error with fewer operations 
and round-off error are dumped out as the process evolves. Rounding errors due to floating-
point arithmetic are frequently become the main problem of direct methods when dealing 
with large and / or ill conditioned systems (Dias & Leitâo, 1998). For that reason, iterative 
methods are the natural options for efficient solutions.

The concept of the half-sweep iteration method has been inspired by Abdullah (1991) via 
the Explicit Decoupled Group (EDG) method to solve two-dimensional Poisson equations. 
Half-sweep iteration is also known as the complexity reduction approach (Hasan et al., 2007) 
since the implementation of half-sweep iterations will only consider half of all interior node 
points in a solution domain. Applications of the half-sweep iteration iterative methods have 
been reviewed in Yousif and Evans (1995), Abdullah and Ali (1996), Othman et al. (2000), 
Sulaiman et al. (2004; 2007; 2008) and Abdullah et al. (2006). 

In 2000, Othman and Abdullah extended this concept by introducing quarter-sweep 
iterative method via the Modified Explicit Group (MEG) iterative method to solve two-
dimensional Poisson equations. Further studies to verify the effectiveness of the quarter-
sweep iterative methods have been carried out by Othman and Abdullah (2001), Hasan et al. 
(2005), Sulaiman et al. (2004), Hasan et al. (2008) and Sulaiman et al. (2008). However, in 
this paper, we examined the applications of the half- and quarter-sweep iteration concepts with 
Gauss-Seidel (GS) iterative method by using approximation equation based on quadrature 
scheme for solving problem (1). The standard GS iterative method is also known as the 
Full-Sweep Gauss-Seidel (FSGS) method. Meanwhile, combinations of the GS method 
with half- and quarter-sweep iterations are called as Half-Sweep Gauss-Seidel (HSGS) and 
Quarter-Sweep Gauss-Seidel (QSGS) methods respectively.
	 The remainder of this paper is organised in following way. In next section, the formulation 
of the full-, half- and quarter-sweep quadrature approximation equations will be elaborated. 
The latter sections of this paper will discuss the formulations of the FSGS, HSGS and QSGS 
iterative methods in solving linear systems generated from discretization of (1) and then 
some numerical results will be shown to assert the effectiveness of the proposed method. 
Besides that, analysis on computational complexity is also given and the concluding remarks 
are given in final section.

Full, Half- and Quarter-sweep Quardrature Approximation Equations

As afore-mentioned, a discretisation scheme based on method of quadrature was used to 
construct approximation equations for problem (1) by replacing the integral to finite sums. 
Generally, quadrature method can be defined as follows 

y t dt A y t y
a

b

j j n

j

n

0

f= +
=

^ ^ ^h h h/# 					     ...(5)

where jt ( )nj ,,2,1,0 =  are the abscissas of the partition points of the integration interval 
[ ]ba, , jA ( )nj ,,2,1,0 =  are numerical coefficients that do not depend on the function 
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( )ty  and ynf ^ h is the truncation error of (5). Figure 1 shows the finite grid networks in 
order to form the full-, half- and quarter-sweep quadrature approximation equations.
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Figure 1  a), b) and c) show distribution of uniform node points for the full-, half- and quarter-sweep cases 
respectively

Based on Figure 1, the full-, half- and quarter-sweep iterative methods will compute 
approximate values onto node points of type  only until the convergence criterion is reached. 
Then, other approximate solutions at remaining points can be computed using the direct 
method (Abdullah, 1991; Othman & Abdullah, 2001). 

By applying Eq. (5) into Eq. (1) and neglecting the error, ynf ^ h, a system of linear 
equations can be formed for approximation values of ( )ty . The following linear system 
generated using quadrature method can be easily shown in matrix form as follows

My
~
= f

~ 								        ...(6)
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	In order to facilitate the formulation of the full-, half- and quarter-sweep quadrature 
approximation equations for problem (1), further discussion will be restricted to repeated 
trapezoidal (RT) scheme, which is based on linear interpolation formula with equally spaced 
data. Based on RT scheme, numerical coefficients jA  will satisfy following relation

,

,

,A ph

ph

j n

otherwise
2
1 0

j =
=

) 						      ...(7)

where the constant step size, h  is defined as follows

h
n

b a= - 								        ...(8)

and n  is the number of subintervals in the interval [ ]ba, . Meanwhile, the value of p , which 
corresponds to 1, 2 and 4, represents the full-, half- and quarter-sweep cases respectively.  

Formulation of the Iterative Methods

As mentioned above, FSGS, HSGS and QSGS iterative methods will be applied to solve 
linear systems generated from the discretisation of the problem (1), as shown in (6). Let 
matrix M  be decomposed into

M D L U= - - 							       ...(9)

where D , L-  and U-  are diagonal, strictly lower triangular and strictly upper triangular 
matrices respectively. Thus, the general scheme for FSGS, HSGS and QSGS iterative 
methods can be written as

y D L Uy f
~ ~

k 1 1

k

= - ++ -^ c^

^

h mh

h

						      ...(10)

Actually, the iterative methods attempts to find a solution to the system of linear equations 
by repeatedly solving the linear system using approximations to the vector y

~
. Iterations 

for FSGS, HSGS and QSGS methods continue until the solution is within a predetermined 
acceptable bound on the error. By determining values of matrices ,D L- and  U-  as stated 
in (9), the general algorithm for FSGS, HSGS and QSGS iterative methods to solve problem 
(1) would be generally described in Algorithm 1.

Algorithm 1: FSGS, HSGS and QSGS methods
For , , , , , ,i p p n p n p n0 2 2K= - -  and , , , , , ,j p p n p n p n0 2 2K= - -
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Numerical Experiences

In order to compare the performances of the iterative methods, several experiments were 
carried out on the following Fredholm integral equations problems.
 
Example 1 (Wang, 2006)

Consider the integral equation,

y x xt x y t dt x4 2

0

1

- - =^ ^ ^h h h# 					     ...(11)

and the exact solution of problem (11) is given by

y x x x24 9 2= -^ h .

Example 2 (Polyanin & Manzhirov, 1998)

Consider the integral equation, 

.y x x t y t dt x x x5 102 2

0

1
6 3- + = - + +^ ^ ^h h h# .			   ...(12)

Exact solution of problem (12) is

y x x x x x5
28

1045
84

21416 3 2= - + + +^ h .

There are three parameters considered in numerical comparison such as number of iterations, 
execution time and maximum absolute error. Throughout the experiments, the convergence 
test considered the tolerance error, 10 10f= - . The experiments were carried out on several 
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different mesh sizes, 513, 1025, 2049, 4097 and 8193. Results of numerical simulations, which 
were obtained from implementations of the FSGS, HSGS and QSGS iterative methods for 
Examples 1 and 2, have been recorded in Tables 1 and 2 respectively. Meanwhile, Figures 2 
and 3 show execution time versus mesh size for Examples 1 and 2 respectively.

Table 1  Comparison of a number of iterations, execution time (seconds) and maximum absolute 
error for the iterative methods (Example 1)

Method
Number of iterations

Mest size
513 1025 2049 4097 8193

FSGS 194 194 195 195 195
HSGS 193 194 194 195 195
QSGS 192 193 194 194 195

Method
Execution time (seconds)

Mesh size
513 1025 2049 4097 8193

FSGS 2.62 10.77 38.77 145.01 570.58
HSGS 0.60 2.86 11.24 39.58 155.91
QSGS 0.18 0.58 2.92 12.30 44.96

Method
Maximum absolute error

Mesh size
513 1025 2049 4097 8193

FSGS 4.69222 E-4 1.17302E-4 2.93249E-5 7.33068E-6 1.83214E-6
HSGS 1.87707E-3 4.69222E-4 1.17302E-4 2.93249E-5 7.33068E-6

QSGS 7.51110E-3 1.87707E-3 4.69222E-4 1.17302E-4 2.93249E-5
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Table 2  Comparison of a number of iterations, execution time (seconds) and maximum absolute 
error for the iterative methods (Example 2)

Method

Number of iterations

Mest size
513 1025 2049 4097 8193

FSGS 194 194 195 195 195
HSGS 193 194 194 195 195
QSGS 192 193 194 194 195

Method

Execution time (seconds)
Mesh size

513 1025 2049 4097 8193
FSGS 2.62 10.77 38.77 145.01 570.58
HSGS 0.60 2.86 11.24 39.58 155.91
QSGS 0.18 0.58 2.92 12.30 44.96

Method

Maximum absolute error
Mesh size

513 1025 2049 4097 8193
FSGS 4.69222 E-4 1.17302E-4 2.93249E-5 7.33068E-6 1.83214E-6
HSGS 1.87707E-3 4.69222E-4 1.17302E-4 2.93249E-5 7.33068E-6

QSGS 7.51110E-3 1.87707E-3 4.69222E-4 1.17302E-4 2.93249E-5
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Figure 2  Execution time versus mesh size of the iterative methods for Example 1
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Execution time vs. mesh size

FSGS

HSGS

QSGS

513 1025 2049 4097 8193

E
x
ec

u
ti

o
n
 t

im
e 

(s
ec

o
n
d
s)

200

150

100

50

0

-

-

-

-

Figure 3  Execution time versus mesh size of the iterative methods for Example 2

Through numerical results obtained for Examples 1 and 2 (refer Tables 1 and 2), it shows 
that number of iterations for HSGS and QSGS methods are nearly the same compared to the 
FSGS method. In terms of execution time for both examples, it can be concluded that HSGS 
and QSGS methods are much faster than FSGS method (refer Tables 1 and 2). Meanwhile, 
the accuracy of the iterative methods is also in good agreement with QSGS method being 
the least accurate.
	 In order to measure the computational complexity of iterative methods, an estimation 
of the amount of the computational work required has been conducted. The computational 
work is estimated by considering the arithmetic operations performed per iteration. Based 
on Algorithm 1, it can be observed that there are 

p
n 1+` jadditions/subtractions (ADD/

SUB) and 
p
n2 1+` j multiplications/divisions (MUL/DIV) in computing a value for each 

node point in the solution domain. From the order of the coefficient matrix,  in Eq. (6), the 
total number of arithmetic operations per iteration for the FSGS, HSGS and QSGS iterative 
methods has been summarized in Table 3.

Table 3  Total number of arithmetic operations per iteration for FSGS, HSGS and QSGS methods

Method
Arithmetic Operation

ADD/SUB MUL/DIV

FSGS n 1 2+^ h n2 1 2+^ h

HSGS n
2

1
2

+` j n2
2

1
2

+` j

QSGS n
4

1
2

+` j n2
4

1
2

+` j
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Conclusion

In this paper, we present an application of the quarter-sweep iterative method for solving 
dense linear systems arising from the discretization of the second kind linear Fredholm 
integral equations by using RT scheme. Overall, the numerical results show that the QSGS 
method is superior to FSGS and HSGS methods in term of execution time. However, it is 
not as accurate as FSGS and HSGS iterative methods. 
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