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Abstract

Extrapolation involves taking a certain linear combination of the numerical solutions 
of a base method applied with different stepsizes to obtain greater accuracy. This linear 
combination is done to eliminate the leading error term. The technique of extrapolation 
(passive and active) in accelerating convergence has been used successfully in numerical 
solution of ordinary differential equations. In this study, symmetric Runge-Kutta methods 
for solving linear and nonlinear stiff problem are considered. Symmetric methods admit 
asymptotic error expansion in even powers of the stepsize and are therefore of special 
interest because successive extrapolations can increase the order by two at time. Two ways 
of applying extrapolation are considered such as the active and the passive. It is interesting 
to know which modes of applying extrapolation are the most efficient when applied with 
symmetric methods. Results of numerical experiments are given which show the efficiency 
of the rational and polynomial extrapolated Implicit Midpoint Rule (IMR) and the Implicit 
Trapezoidal Rule (ITR) in solving Chemistry and Chemical Reaction problems. Numerical 
results show that in both types of extrapolation, the passive mode is considered to be the 
most efficient. The results also show that extrapolation with smoothing gives better results 
than without smoothing.

Keywords   Runge-Kutta methods, symmetric methods, smoothing, rational and 
polynomial extrapolation

Abstrak

Extrapolasi melibatkan pengambilan beberapa gabungan linear daripada penyelesaian 
berangka bagi kaedah asas yang diaplikasikan dengan jarak langkauan yang berbeza untuk 
mendapatkan kejituan yang tinggi. Gabungan linear ini dilakukan untuk menghapuskan 
sebutan ralat yang tinggal. Teknik extrapolasi (pasif dan aktif) dalam mempercepatkan 
penumpuan telah berjaya dalam penyelesaian berangka bagi persamaan pembezaan biasa. 
Dalam kajian ini, kaedah Runga-Kutta yang simetrik telah dipilih untuk menyelesaikan 
masalah linear dan tak linear. Kaedah simetrik membenarkan pengembangan ralat 
asimtotik dalam kuasa dua genap bagi jarak langkauan. Dengan itu menjadikannya tarikan 
yang istimewa kerana extrapolasi yang berjaya boleh ditingkatkan sebanyak dua peringkat 
pada satu-satu masa. Terdapat dua cara mengaplikasi extrapolasi iaitu secara aktif dan 
pasif. Adalah menarik untuk mengetahui mod aplikasi extrapolasi yang paling efisyen 
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apabila diaplikasikan dengan kaedah simetri. Hasil eksperimen berangka telah diberi dan 
menunjukkan kecekapan extrapolasi rasional dan polinomial bagi Kaedah Titik Tengah 
Pepenjuru Tersirat (IMR) dan Kaedah Trapezoid Tersirat (ITR) dalam menyelesaikan 
masalah Kimia dan Tindak Balas Kimia. Keputusan berangka menunjukkan antara kedua-
dua jenis extrapolasi, mod pasif adalah lebih cekap. Hasil kajian juga menunjukkan bahawa 
extrapolasi dengan teknik pelicinan memberikan hasil yang lebih baik berbanding tanpa 
pelicinan.

Kata kunci  Kaedah Runge-Kutta, kaedah simetri, pelicinan, extrapolasi rasional dan 
polinomial

Introduction

Extrapolation technique has been used successfully by the Runge-Kutta methods in solving 
physical, chemical and biological problems. Extrapolation involves taking a certain linear 
combination of the numerical solutions of a base method applied with different stepsizes to 
obtain greater accuracy. Several methods can be combined with extrapolation to increase 
the accuracy of the solutions whether in solving ordinary differential equations (ODEs), 
boundary value problems (BVPs) or partial differential equations (PDEs). These methods 
are fitted operator finite difference (Munyakazi & Patidar, 2008), General Linear Methods 
(Cardone, Jackiewicz, Sandu & Zhangx, 2014), iterated discrete projection (Zhongying, 
Guoqiang & Gnaneshwar, 2009), Runge-Kutta methods (Gorgey, 2012) and Crank-
Nicolson method ( Gorgey, 2014). 

Consider a system of N initial value ordinary differential equations

0 0( , ), ( )y f x y y x y′ = = 							                (1)

In solving the problem (1), Runge-Kutta methods is applied. Runge-Kutta methods can 
be defined as

1 11
( , ),S

i n ij n j ji
Y y h a f x c h Y− −=
= + +∑ 						             (2a)

1 11
( , ),S

n n ij n j ji
Y y h b f x c h Y− −=

= + +∑ 						            (2b)

where Yi represent the internal stage values and yn represent the update of y at the nthstep    
(Butcher, 2005). This research is only focus on the implicit midpoint rule (IMR) and the 
implicit trapezoidal rule (ITR). The Butcher tableau for IMR and ITR are defined as given 
in Table 1 and Table 2.
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Table 1   The Butcher tableau for IMR
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Table 2   The Butcher tableau for ITR
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IMR and ITR methods are lower order implicit methods of order-2. Although these two 
popular methods have been used widely, there are limitations due to the lower order. These 
methods are restricted in solving linear and nonlinear problems. However, due to the 
symmetric properties (Chan, 1993; Chan & Gorgey, 2013) with extrapolation, the order 
of the method increases by two at a time. This is due to the asymptotic error expansions 
that are in even powers. Therefore it is interesting to observe how well these methods with 
extrapolation can solve linear and nonlinear stiff problems.

For symmetric methods, the asymptotic error expansion is in even powers

2 2 ( 2 )
1 2( ) ( ) ( ) ... ( ) ( ),p p p k p k

n p kY y x x h x h x h O h    k = 1,2, ...,σ σ σ+ + +
+= + + + + +

where σ1, σ2, ..., σk are any smooth functions.

For example, consider applying IMR and ITR to the Prothero and Robinson (1974) problem

( ( )) ( ),y y g x g xλ′ ′= − +

with g(x) = e-x and y(0) = 1.
The asymptotic error expansion for IMR is given by
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and for ITR the asymptotic error expansion is given by
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Where R is the stability function given by,

R(hλ) =
1+ 1
2
hλ

1− 1
2
hλ

of IMR and ITR. Both IMR and ITR have asymptotic error expansions in h2, h4 which are 
even powers. If the error expansion satisfies up to h2 then the method is said to have order 
h4+O. 

Preliminaries

Smoothing Technique

In the context of ODEs, the idea of extrapolation was first extended by Gragg (1965) when 
he studied the behaviour of explicit midpoint rule (EMR) in solving Kepler problem. Gragg 
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observed that the numerical solutions of the EMR give oscillatory solutions hence with 
extrapolation the solutions, failed. Therefore, Gragg introduced the smoothing technique 
to dampen the oscillations in the EMR solutions. The smoothing is achieved by simply 
applying the formula

yn =
yn−1 + 2yn + yn+1

4 				            
(3)

For IMR and ITR methods, it turned out that the smoothing formula can also be used 
to dampen the oscillatory behaviour arise by the global errors due to the stability (Chan & 
Gorgey, 2011). The extension of smoothing known as symmetrizer is possible for higher 
order symmetric methods (Chan, 1993; Gorgey, 2012). 

In this paper, the experiments on the IMR and ITR with smoothing and extrapolation 
are given for Chemistry Problem 1 and Chemistry Reaction Problem 2 in results and 
discussion section.

Extrapolation

Richardson Extrapolation (Richardson, 1911) is a technique to increase the accuracy of the 
method. There are two ways of applying extrapolation which is active and passive. Active 
extrapolation occurs when the extrapolated value is used in the next computations and if the 
extrapolated value is not being used in any subsequent computations then the extrapolation 
is called passive. Although the idea of extrapolation is old, many researchers are still trying 
to find out which mode of extrapolations is the most efficient and to avoid uncertainties many 
prefer to use both modes of extrapolation. For example, Faragó, Havasi and Zlatev (2010) 
investigated the computing time for both active and passive extrapolations compared with 
the Backward Euler. Their results showed that the computing done by the extrapolation for 
both active and passive is ten times smaller than the corresponding computing time for the 
Backward Euler. Hence, they concluded that regardless of active or passive modes, both 
modes of extrapolation are still powerful to increase the accuracy. On the other hand, Zlatev, 
Georgiev and Dimov (2014) studied on the absolute stability properties of the Richardson 
Extrapolation by the explicit Runge–Kutta methods of order-1– order-4. They mentioned 
that the passive extrapolation may fail when the method is not stable for large stepsize in 
solving certain problems but active extrapolation works fine for larger stepsize although 
the method is not stable. Besides that, Faragó, Havasi and Zlatev (2013) also studied the 
convergence of the diagonally implicit Runge–Kutta method with active extrapolation. The 
extrapolation results in a convergent numerical method if the initial value problem satisfied 
the Lipschitz condition.

In this paper, the studies of extrapolation focuses on two ways of extrapolation which is 
rational and polynomial and also two modes of extrapolation which are active and passive 
by the IMR and ITR methods in solving linear and nonlinear problems.

The extrapolation formula used is defined in equation (4)
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where p stand for order, h is stepsize of the method. This formula is used especially when 
the base methods are symmetric.

Results and Discussion

Numerical experiments are given for linear and nonlinear stiff problems. The first problem 
is the chemistry problem by Shieh, Chang and Carmichael (1988) while the second problem 
is the nonlinear chemistry reaction taken in DeTEST problems (Hull, Enright, Fellen & 
Sedgwick, 1972). Each problem will be tested based on the efficiencies (CPU time) of 
the rational and polynomial extrapolations with active and passive modes. Smoothing 
technique is also applied together with extrapolation.

The numerical results for IMR and ITR are given with rational and polynomial active 
and passive extrapolations. Results are also given for extrapolation with smoothing. IMRs 
stand for implicit midpoint rule with smoothing and ITRs means implicit trapezoidal 
rule with smoothing. AX is the abbreviation for active extrapolation while PX is the 
abbreviation for passive extrapolation. Rat and Poly stands for rational and polynomial 
extrapolations respectively. The numerical results for Problem 1 are given in Figure 1- 4 
while the numerical results for Problem 2 are given in Figure 5 and Figure 6.

Problem 1: Chemistry problem
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with y1 (0) = 1, y2 (0) = 1, y3 (0) = 1 , y4 (0) = 1, y5 (0) = 1, y6 (0) = 1.

Figures 1 - 4 show the efficiencies diagrams for Problem 1. Figure 1 and Figure 3 are 
the results for the IMR while Figure 2 and Figure 4 are the results for the ITR. For, it is 
shown that for both methods, passive mode of rational and polynomial extrapolations is 
more efficient than the active mode.

On the other hand, interesting results obtained for α = 106. The base methods with 
active and passive rational and polynomial extrapolations failed for Problem 1 but works 
when smoothing is applied with active and passive rational and polynomial extrapolations.  
For both methods, passive mode of rational and polynomial extrapolations is shown to be 
more efficient than the active mode of either type of extrapolations. It is also interesting 
to see the behaviour of the polynomial and rational extrapolations are almost the same. 
Hence, smoothing is important for certain types of problem when extrapolation fails with 
the base method.
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Figure 1   Problem 1 by the IMR for α = 10 Figure 2   Problem 1 by the ITR for α = 10

Figure 3   Problem 1 by the IMR for α = 106 Figure 4   Problem 1 by the ITR for  α = 106

Problem 2: Nonlinear Chemistry Reaction
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with  y1 (0) = 1, y2 (0) = 0, y3 (0) = 0. 

For Problem 2, the numerical results are given in Figure 5 and Figure 6. It is shown that 
for both IMR and ITR, passive mode of polynomial is the most efficient. Almost similar 
observation is observed in Problem 1 that passive mode is the most efficient.
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Figure 5   Problem 2 by the IMR Figure 6   Problem 2 by the ITR 

Conclusions

Although the numerical experiments are only given for two types of problem, however for 
the future research, the numerical results for other types of problems will be explored. From 
the numerical experiments, it is observed that the passive mode of rational and polynomial 
extrapolation is the most efficient in solving Chemistry problems and only passive mode 
of polynomial in solving Chemistry Reaction problems. In addition to this, when the stiff 
ratio is high, both methods (passive mode of rational and polynomial) failed to perform 
with extrapolation but with smoothing, extrapolation works well. It is therefore interesting 
to continue researching on what types of problems extrapolation works well.
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