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Abstract 

 
We proposed and analyzed a nonlinear mathematical model for typhoid fever and optimal control in a community 

with overpopulation. The model considered the effect of environmental precautions on the transmission of typhoid 

fever. We obtained the basic reproduction number denoting the epidemic indicator. We proved the local and global 

asymptomatic stability conditions for disease-free and endemic equilibrium. The model exhibits strategies for 

optimal control of typhoid fever, such as preventive strategies (environmental sanitation, proper hygiene, 

vaccination) and the treatment strategy. The numerical simulation of typhoid fever disease transmission and its 

maximum control summarized that prevention and treatment are the best methods for eradicating the disease in 

society. Since ,1174.00 R  which is less than one, it follows that the disease-free equilibrium is asymptomatically 

stable, and that the disease will always die out. 

 

Keywords: Mathematical model; Basic reproduction number, Disease free equilibrium, hygiene, global stability 

 

 

INTRODUCTION 

 
Typhoid fever is an infectious disease caused by the bacteria Salmonella Typhi and Salmonella Paratyphi 

[1, 2]. The primary routes of transmission are through the consumption of food and water contaminated 

with the faeces and urine of infected individuals [3, 4]. Symptoms of typhoid fever include headache, 

stomach-ache, muscular pain, nausea, constipation, vomiting, diarrhea, loss of appetite, and fever. Enteric 

fever is a collective term that encompasses both typhoid and paratyphoid fever, with paratyphoid fever 

being clinically indistinguishable from typhoid fever. Individuals infected with Salmonella Typhi may 

suffer severe health consequences due to the infection. According to the World Health Organization 

(WHO) [5], typhoid fever affects between 11 and 20 million people annually, resulting in 128,000 to 

161,000 deaths each year [6]. 

Mary Mallon, commonly known as Typhoid Mary, is the most well-known carrier of typhoid 

fever, being the first person in the United States identified as a carrier of the pathogen [7]. The bacillus 

suspected to cause typhoid fever was first described by Karl Joseph Ebert in 1880 [8]. Four years later, 

pathologist Georg Gaffky confirmed this link, naming the bacillus Eberthella typhi, now known as 
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Salmonella enterica [9]. The first effective vaccine for typhoid was developed by Almroth Edward Wright 

and introduced for military use in 1896, significantly improving the health of soldiers who were more 

likely to die from typhoid than in combat at that time [10]. 

A variety of vaccines have been recommended against typhoid infection, depending on individual 

age [11]. These vaccines include the injectable Typhoid Conjugate Vaccine (TCV), the injectable 

polysaccharide vaccine based on purified Vi antigen, and the oral live attenuated Ty21a vaccine [12]. 

While TCV is suitable for all ages, the other two are specifically designed for children. Additionally, 

TCV's enhanced immunological properties contribute to its popularity and preference among typhoid 

fever prevention vaccines [13]. Despite these advancements, the global burden of typhoid fever remains 

significant, particularly in regions with inadequate sanitation and limited access to clean water [14]. 

Researchers are dedicating significant efforts to developing alternative methods to prevent both 

the infection and transmission of typhoid fever, in addition to vaccine-based treatments [15]. This includes 

creating affordable preventive measures that can be widely adopted. In the field of mathematical 

epidemiology, numerous models have been developed to clarify the intricate dynamics of typhoid disease 

transmission. The aim of these models is to enhance the understanding of the disease transmission process 

and to identify appropriate measures that can mitigate its impact on public health [16]. By leveraging 

mathematical insights, the scientific community seeks to improve the methods used for preventing and 

controlling typhoid fever, contributing to the global effort to combat this ongoing health problem [17]. 

Examples of such models are reported in [18, 19, 20, 21].  

Furthermore, the adoption of mathematical modeling has emerged as a crucial strategy in 

understanding and mitigating the spread of typhoid fever. These models assess the effectiveness of 

various preventative measures, such as improved sanitation and water purification, in reducing 

transmission [22]. By simulating the dynamics of disease spread, mathematical models provide valuable 

insights that aid policymakers and health professionals in devising effective control and prevention 

strategies [23]. This research aims to contribute to these efforts by developing a mathematical model that 

captures the dynamics of typhoid fever transmission, thereby offering a tool for evaluating the potential 

impact of various public health interventions [24]. The following authors have significantly model 

infectious diseases with control strategies [25-30]. Mathematical models are increasingly being utilized in 

various applications within the field of Mathematics [31, 32] 

This study is situated within a broader context of ongoing research and innovation aimed at 

overcoming the multifaceted challenges posed by typhoid fever. The persistent threat of this disease, 

particularly in low- and middle-income countries, underscores the urgency of developing effective 

interventions. By leveraging the power of mathematical modeling in conjunction with cutting-edge 

advancements in vaccine development and comprehensive public health strategies, this research 

endeavors to deepen our understanding of the intricate dynamics of typhoid fever transmission. Through 

detailed analysis and robust simulations, we aim to uncover critical insights that can inform policy 

decisions and optimize resource allocation. Ultimately, this study aspires to make a significant 

contribution to the global effort to alleviate the burden of typhoid fever, improving health outcomes and 

enhancing the quality of life for affected populations around the world. 
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MATERIAL AND METHOD 
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Error! Reference source not found. is the formulated model for the study of dynamics of typhoid fever 

disease. 

 

 
Figure 1 Schematic diagram for the transmission dynamics of Typhoid 

 

Table 1 description of variables 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Description of Variables 

 tS  Susceptible individuals / populations 

 tI A  Asymptomatic infected individuals 

)(tI S  Symptomatic infected individuals 

 tT  Treated in factious individuals 

 tR  Recovered individuals 
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Table 2 description of parameters 

 
Parameters Descriptions 

  Recruitment rate in to the susceptible population. 

  Rate of loss of immunity 

  Effective contact rate 

  Natural death rate 
  Progression rate from  IA (t) to IS (t) 
  Treatment rate for IA (t) 

  Disease-induced death 

  Recovery rate for treated infectious individuals 

 

Analysis of Mathematical Model 

 

The Invariant Region 

Lemma I: Let the feasible region of the model be D , Such that  
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Proof: 

Consider the biologically feasible region D, Then the rate of change of the total population is Obtained 

by adding all the equation present in the system of (1) which gives: -     

       

RRTTTTIIIIIIISISSIR
dt

dN
SSSSAAASS               (2) 

TIRTIIS
dt

dN
SSA                                                   (3) 

  TIRTII
dt

dN
SSA          (4) 

 Since RTIISN SA  and 0 TIS   

 

Then, Error! Reference source not found. becomes: -  

N
dt

dN
            (5) 

               

Then, in the absence of mortality rate due to Typhoid, Error! Reference source not found. becomes: 

N
dt

dN
            (6) 

        

Now, following the standard technique (method of integrating factor), Error! Reference source not 

found. is further Simplified as follows: 
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N
dt

dN
            (7) 

        
 

               












  c

e
eN

t
t




           (8) 

 

   


 
  tceNtN 0   ;  




N          

 

Hence, for all ,0t  the solutions of the model with the initial conditions in the region D  will remain in the 

region a where being epidemiologically and modeling well posed. Therefore, the biologically feasible region D  

is positively – invariant. 

 

Positivity of Solution 

 For the typhoid model Error! Reference source not found. to be epidemiologically meaningful and 

mathematically well posed, it is worthwhile to prove that all the solutions with the non-negative for all 

time 0t . 

 

Theorem 1  

Solution of system (1) given by the set  ,,,,, RTIIS SA
 with non-negative initial conditions 

          0,0,0,0,0 RTIIS SA
 remain non-negative for time .0t  

 

 

Proof: - 
F rom the  f i r s t  equat ion  of  t he  model :  
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Using the  same  me thod  for  Error!  Reference  source  not  found. ,  we  have   
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Existence and Uniqueness of Solution  

Statement of the theorem:  

 

Consider the system of equations below: 
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The system Error! Reference source not found. can be written in compact form as: 

    00

1 ;, xtxxtfx             

Theorem 2: (Derrick and Grossman, 1976) Given     00;, xtxxtf
dt

dx
       

Let D  denote the region, such that:   bxxatttxD  00 ,:,  where 

        
002010021 ,...,,;,...,, nn xxxxxxxx   and suppose that  xtf , satisfies Lipschitz condition 

    2121 ,, xxxtfxtf           (12) 

   

Whenever the pairs  1, xt and  2, xt  belongs to D , where K  is positive constant. Then, there exists a 

constant 0S  such that, there exist is a unique continuous vector solution  tX of the solution of the 

equation (12) in the interval Stt  0  

It is of great importance to note that the condition in equation (3.28) is satisfied by the 

Requirement that 

nji
x

f

j

i ,...2,1,, 



 be continuous and bounded in D  

Theorem 3: 

Let: 

 ,,,,, RTIISff sAii  where ,,...,2,1 ni  such that 
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Now Let 
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Then, the system Error! Reference source not found. has a unique solution in D. Thus, we have the 

following proofs. Following Derrick and Grossman (1976), There exists a unique solution if the partial 

derivatives: 
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Now, for the first compartment of the model, when  
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Therefore  

xj

f



 1 , where 5,...,2,1, jI  and ,,,,, RTIISx SA  are continuous and bounded. 

Hence, the system of equation (3 .29) has a unique solution and so, the model is 

mathematically and epidemiologically well  posed.  
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Endemic Equilibrium Point  (EEP)  

Let the endemic equilibrium point of typhoid pre sent equilibrium of the model 1  

denoted by

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Determination of Basic Reproduction Number (R0) 

Consider the infection related compartment in the typhoid model.  Using the next 

generation matrix method (NGM),  
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where: 

  = Spectral  radius 

F  = New infection terms A 

V = Transmission of infection 

Then, 
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Since 
iMaxR 0 of ,1FV  it  follows that  

  






0R           (16)  

                                                          

Local Stability of Disease-Free Equilibrium  
Theorem 4:- The disease free equilibrium of the system Error! Reference source not found. is locally 

asymptotically stable (LAS) if the threshold quantity 10 R  and unstable if otherwise  10 R . 

Then, the Jacobian matrix defined for the system is as follows: - 
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following Descartes Rule of signs, the Polynomial of order five Obtained in Error! 

Reference source not found.  has no positive roots of  

(i) 04321  KKKK  

(ii)        04343243214321  KKKKKKKKKKKKK  

(iii)        






 21434321434324321 KKKKKKKKKKKKKKKKK  
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Hence, the disease-free equilibrium is locally asymptotically stable, if the associated basic reproduction 

Number  0R  is less then unity  10 R  and unstable if otherwise when  10 R  

Sensitivity Analysis of the Model 

To see the effects or behavior of each parameter present in the basic reproduction number, it is worthwhile 

to investigate how sensitive the parameters are in the basic reproduction number, 

Following the normalized forward sensitivity index, the sensitivity analysis of the model is carried out as 

follows. 

 
0

00

R

RR 


  




  

Then, the sensitivity indices of R0 to each of the parameters are calculated or determined. 

Table 3 list of parameters used for the numerical analysis. 

 

PARAMETERS VALUES 

  0.75 

  0.0925 
  0.01503 
  0.015 

  0.35 
  0.0625 

  0.125 

  0.00095 
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  
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    015.0125.00626.0015.001503.0015.0

75.000095.001503.0
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


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    2025.003003.0015.0

0000107089.0
0


R  

 
 006081075.0015.0

0000107089.0
0 R  

 
0000912161.0

0000107089.0
0 R  

 1174014237.00 R  

 
Table 4  Sensitivi ty indices of the models parameters with R 0  

Parameter Sensitivity Index 

  1.0 

  0.997 

  -1.0 

  -0.061 

  -0.021 

  -0.043 

  1.0 

 
Figure 2a: Sensitivity analysis of the model system 
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Figure 2b: 3-dimensional plot of the basic reproduction number versus the most sensitive parameters  and   

 

Numerical Simulation 

Since, the Error! Reference source not found. cannot solve analytically because of its linearity, 

therefore, the solution was obtained by using a numerical method [25,26]. The initial conditions used for 

the simulations are as follows;   ,30000 S    ,21000 AI    ,20000 SI   10000 T  and 

  5000 R  at 0t . 
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Figure 3: Varying parameter  in different states of the model 
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Figure 4 3D plot of parameters  and  in different states of the model 
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Figure 5: Varying parameter  in different states of the model 

 

 

DISCUSSION 

 
Figure 2a & 2b show the sensitivity analysis of the model system. Succinctly, parameter 

 & contribute more to the Basic reproductive number 0R . So, to curb the transmission dynamic of 

typhoid fever in the population, it is therefore encouraged to minimize the contact rate and the progression 

from )(tI A to )(tIS .  

Figure 3 demonstrates that an augmentation in the rate of progression among individuals afflicted 

with typhoid fever exerts a pronounced influence on the transmission dynamics of the ailment within the 

population. In other words, when   is zero, the curve in the susceptible and asymptomatic classes 

increase rapidly. So, the higher the  the more increase its curve and vice versa. It is observed that the 
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fever will go into extinction in about 50 days if proper class is identified for each patient and if proper 

treatment is given to infected patient. This impact is discernible through the concurrent augmentation in 

the populace comprising individuals in the clinical stage of the infection. Evidently, the affirmative 

influence of the progression rate on this class is poised to amplify the exponential surge of typhoid fever 

within the population, unless decisive measures are promptly instituted to mitigate its transmission 

dynamics.  

Figure 4 illustrates the outcomes of a sensitivity analysis, elucidating the paramount parameters 

contributing to the Basic Reproduction Number (R₀) in the compartmentalized model system. The four 

graphs delineate the pronounced influence of the two most pivotal parameters on the transmission 

dynamics, as their values are systematically incremented. It is obvious to see that the more increased the 

values of these two parameters, the higher its curves as shown on the susceptible, asymptomatic, 

symptomatic, recovered compartments. The effect was shown by consecutively increasing the values of 

 & .  It is strongly recommended that individuals afflicted with typhoid fever exercise caution near 

non-infected (susceptible) individuals. Moreover, the prompt identification of symptomatic cases should 

be facilitated through enhanced mechanisms. This approach aims to significantly curtail the progression 

rate from the asymptomatic to the symptomatic compartment )(tI A to )(tIS
, thereby potentially 

achieving a disease-free equilibrium. 

Figure 5 elucidates the pivotal role played by the treatment rate of infectious individuals in the 

extirpation of typhoid fever from the population. The empirical findings indicate a positive correlation 

between the augmentation of the treatment rate and the concurrent increase in the cohort of treated in 

factious individuals, juxtaposed with a concomitant decrease in the population of symptomatically, 

asymptomatically infected individuals. Also, the recovered compartment increases drastically as infected 

individuals get treated. These observations underscore the imperative for medical health practitioners, 

governmental bodies, and non-governmental agencies to ensure the accessibility of efficacious 

medications or pharmaceutical interventions for treating typhoid fever. Such measures are essential for 

fortifying the effective control mechanisms governing the transmission dynamics of this fever within the 

population.  

 

 

CONCLUSION 

 
This study successfully developed and analysed a nonlinear mathematical model to understand and 

control the transmission of typhoid fever in overpopulated communities. By incorporating environmental 

precautions and determining the basic reproduction number R0, we established the local and global 

asymptotic stability conditions for both disease-free and endemic equilibria. Our findings emphasize the 

importance of minimizing the contact rate and the progression from asymptomatic to symptomatic states 

to effectively control the spread of typhoid fever. Sensitivity analysis revealed that parameters β and ρ 

significantly impact R0, indicating that targeted efforts to reduce these parameters are crucial. 

Furthermore, our model highlights the critical role of treatment rates in reducing the population of 

symptomatically infected individuals. There is a positive correlation between increased treatment rates 

and the decline of symptomatic cases, underscoring the need for accessible and effective medical 

interventions. This research provides valuable insights into the transmission dynamics of typhoid fever 

and the effectiveness of various control strategies. By integrating mathematical modelling with 

advancements in vaccine development and public health measures, this study contributes to the global 

effort to mitigate the burden of typhoid fever. Future research should focus on refining these models and 

exploring new strategies to enhance control and prevention efforts. 
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