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Abstract 

 
This study explores the application of the weighted average method for solving the Burger-Fisher equation, a nonlinear 

partial differential equation (PDE) of significant interest in various scientific disciplines. Nonlinear PDEs, such as the 

Burger-Fisher equation, are fundamental in describing complex physical, biological, and engineering phenomena but 

pose challenges for both analytical and numerical solutions. The weighted average method, known for its ability to 

converge rapidly to exact solutions, offers a promising approach for tackling such equations. By discretizing both 

spatial and temporal derivatives using a combination of forward, backward, and central differences, the method 

approximates solutions with high accuracy and stability. Conducting convergence and stability analyses, this study 

elucidates the computational requirements and performance characteristics of the weighted average method. Utilizing 

mathematical software like MATLAB and MAPLE, the method's implementation involves solving a tridiagonal matrix 

system at each time step. Comparison between numerical solutions obtained using the method and exact solutions 

demonstrates the method's accuracy, with negligible errors observed. Visual representations further illustrate the close 

agreement between the numerical and exact solutions, validating the method's reliability for practical applications. The 

study's findings underscore the practical utility of the weighted average method in solving the Burger-Fisher equation 

and similar nonlinear PDEs. Its ability to accurately approximate solutions while maintaining stability highlights its 

efficacy as a computational tool for addressing complex mathematical problems across diverse scientific and 

engineering fields. The study contributes to advancing the understanding and application of numerical methods for 

nonlinear PDEs, offering valuable insights for researchers and practitioners seeking precise and reliable solutions to 

complex mathematical models. Overall, the study emphasizes the importance of fine-tuning numerical parameters and 

leveraging computational resources to achieve optimal accuracy when utilizing the weighted average method for 

solving nonlinear PDEs. 
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INTRODUCTION 

 
Nonlinear partial differential equations (PDEs) are a class of mathematical equations that involve unknown 

functions of multiple variables and their partial derivatives, where the relationship between these functions 

and their derivatives is nonlinear. These equations are fundamental in describing a wide array of physical, 

biological, and engineering phenomena, characterized by their complexity and the challenge they pose for 

both analytical and numerical solutions. Nonlinear PDEs are crucial for modeling various processes in 

science and technology [1-5]. They appear in diverse fields such as fluid dynamics, plasma physics, solid 

http://ojs.upsi.edu.my/index.php/EJSMT/index
mailto:sgbodogb@iu.edu


Exploring the Efficacy of the Weighted Average Method for Solving Nonlinear Partial Differential Equations: A 

Study on the Burger-Fisher Equation 

61 

mechanics, and quantum field theory. In fluid dynamics, for example, they describe the behavior of fluids 

under different conditions, capturing phenomena like turbulence and shock waves. In biological systems, 

nonlinear PDEs can model population dynamics, the spread of diseases, and pattern formation in 

developmental biology. In chemistry, they are used to describe reaction-diffusion systems, which are 

essential for understanding processes like chemical reactions and the spread of substances [6-10].  

The general form of a nonlinear PDE can be written as (𝑢, 𝑢𝑥, 𝑢𝑡,,,𝑡,… ) = 0, Where P is a polynomial 

involving the function (u) and its partial derivatives. Solving these equations analytically or numerically is 

essential for creating accurate models of physical systems. 

Finding exact solutions to nonlinear PDEs is often challenging due to their complexity. Analytical 

methods are limited to special cases and often require sophisticated mathematical techniques. As a result, 

numerical methods play a vital role in solving these equations. Common numerical methods include finite 

difference, finite element, and finite volume methods, which discretize the equations and solve them 

approximately on a computational grid. One effective numerical approach is the weighted average method, 

which discretizes both spatial and time derivatives. This method is noted for its ability to converge rapidly 

to the exact solution, making it a valuable tool in computational simulations [10-15]. The Burgers-Fisher 

equation is a prominent example of a nonlinear PDE, combining elements from both the Burgers and Fisher 

equations. It models phenomena involving convection, diffusion, and reaction processes, such as fluid 

dynamics, heat conduction, and population genetics. This equation is particularly useful for studying the 

interaction between reaction mechanisms, convection effects, and diffusion transport. Another significant 

application of nonlinear PDEs is in reaction-diffusion systems, which describe the spatial and temporal 

evolution of chemical concentrations. These systems are used to model processes such as pattern formation 

in biological organisms and the spread of chemical reactions [15-20].  The study of nonlinear PDEs is a 

dynamic and ongoing field of research. One of the main challenges is developing efficient and accurate 

numerical methods to solve these equations for complex systems. Researchers are also focused on finding 

more general analytical solutions and understanding the underlying structures and behaviors of these 

equations. In recent years, advanced computational techniques, including machine learning and high-

performance computing, have been applied to the study of nonlinear PDEs, offering new avenues for 

exploration and solution strategies. These methods have the potential to uncover new insights and provide 

more accurate models for the complex phenomena described by nonlinear PDEs [25-30]. 

The Burgers equation is a fundamental partial differential equation that plays a crucial role in 

various fields of applied mathematics and physics. It is named after the Dutch physicist Johannes Martinus 

Burgers, who introduced it as a simplified model for turbulent fluid flow. The Burgers equation is widely 

used to model various physical phenomena. In fluid dynamics, it describes the propagation of shock waves 

and turbulence in a viscous medium. It is also applied in traffic flow modeling, the density of cars, and in 

gas dynamics, where it helps understand the behavior of gas particles under certain conditions. Additionally, 

the equation finds use in acoustics, where it models nonlinear wave propagation in dissipative media. The 

Burgers equation combines nonlinear convection and linear diffusion terms. This combination captures the 

essential features of more complex fluid dynamic equations like the Navier-Stokes equations [31-36]. The 

nonlinear term represents the inertial forces, while the diffusion term accounts for the viscous effects. This 

dual nature makes the Burgers equation a valuable tool for studying the interplay between nonlinearity and 

diffusion in physical systems. For specific initial and boundary conditions, the Burgers equation can be 

solved exactly using methods such as the Cole-Hopf transformation, which transforms it into a linear heat 

equation. This solution provides insights into the formation and evolution of shock waves and other complex 

structures. Due to its simplicity and rich structure, the Burgers equation is often used as a benchmark for 

testing numerical methods. Techniques like finite difference, finite element, and spectral methods are 

commonly employed to solve it numerically [37-42]. These methods discretize the equation in time and 

space, allowing for the simulation of its dynamic behavior under various conditions. The Burgers equation 

serves as a prototypical example for understanding more complex nonlinear PDEs. Its study has led to the 

development of various analytical and numerical techniques, which are applicable to a wide range of 

problems in applied mathematics and physics. Furthermore, it helps researchers explore fundamental 

concepts such as shock wave formation, turbulence, and the effects of nonlinearity and diffusion [43-49]. 

The Fisher equation, also known as the Fisher-Kolmogorov equation or the Fisher-KPP equation, 

is a key nonlinear partial differential equation that models the spread of advantageous genes in a population. 

Named after the British statistician and geneticist Ronald Fisher, who introduced it in 1937. The Fisher 

equation is fundamental in various fields, particularly in biology and ecology. It describes the spatial spread 
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of advantageous genetic traits, invasive species, and diseases. The equation is also relevant in chemical 

kinetics, where it models the reaction-diffusion processes, and in the spread of cultural or technological 

innovations. The Fisher equation combines linear diffusion and logistic growth. The diffusion term models 

the random movement or dispersal of individuals in space, while the logistic growth term captures the 

reproduction rate and carrying capacity constraints [49-54]. This combination leads to traveling wave 

solutions that describe how an advantageous gene or species spreads spatially over time. The Fisher equation 

has traveling wave solutions. These solutions are typically obtained using techniques like the method of 

characteristics or perturbation methods. Numerical methods are extensively used to solve the Fisher 

equation, especially for complex initial and boundary conditions where analytical solutions are not feasible. 

Common numerical techniques include finite difference, finite element, and spectral methods. These 

approaches discretize the equation in space and time, allowing for the simulation of wave propagation and 

the dynamics of population spread. The Fisher equation has profound implications in theoretical and applied 

research. In population genetics, it provides insights into how advantageous traits propagate through a 

population, influencing evolutionary dynamics. In ecology, it helps understand the spread of invasive 

species and the impact of habitat fragmentation [55-60]. The equation also finds applications in 

epidemiology, where it models the spatial spread of infectious diseases. Beyond its biological origins, the 

Fisher equation is applicable in various other domains. In neuroscience, it models the spread of electrical 

activity in neural tissues. In environmental science, it describes pollutant dispersion in ecosystems. Its 

versatility and foundational nature make it a critical tool in modeling and understanding diffusion-reaction 

processes across different scientific fields [61-63].  

The Burgers-Fisher equation is a notable nonlinear partial differential equation that integrates 

elements from both the Burgers equation and the Fisher equation. The Burgers-Fisher equation is utilized 

in a variety of fields, including fluid dynamics, biological population dynamics, and chemical kinetics. In 

fluid dynamics, it models the combined effects of convection, diffusion, and reaction, capturing complex 

behaviors such as shock wave formation and turbulence. In ecology, it describes the spread of a species with 

both dispersal and logistic growth. This equation combines the nonlinear convective term from the Burgers 

equation with the diffusive term and the logistic growth term from the Fisher equation [62-66]. The 

convective term represents the transport due to velocity; the diffusive term models the spreading due to 

viscosity or random movement, and the logistic growth term accounts for population increase and 

environmental carrying capacity. Solving the Burgers-Fisher equation analytically is challenging due to its 

nonlinear nature. However, specific cases can be approached using transformation methods or perturbation 

techniques. Numerically, methods such as finite difference, finite element, and spectral methods are 

employed. These techniques discretize the equation, facilitating the study of its dynamic behavior under 

various initial and boundary conditions. The Burgers-Fisher equation serves as a prototypical model for 

understanding the interaction between convection, diffusion, and reaction mechanisms. It helps researchers 

investigate complex phenomena like shock wave formation, turbulence, and population dynamics. The 

equation is a benchmark for testing numerical methods and exploring the interplay of nonlinear and diffusive 

effects in various scientific and engineering applications [4, 7-10, 60-66]. 

The Crank-Nicolson method is a widely used numerical scheme for solving time-dependent partial 

differential equations, particularly those involving parabolic PDEs like the heat equation. Named after John 

Crank and Phyllis Nicolson, who introduced it in 1947, this method is a finite difference approach that is 

implicit in time and second-order accurate in both time and space. The Crank-Nicolson method averages 

the implicit backward Euler method and the explicit forward Euler method. It achieves this by taking the 

average of the PDE at the current time step and the next time step. The Crank-Nicolson method is 

unconditionally stable for linear problems, meaning it does not require a restrictive relationship between the 

time step size and the spatial grid size. Its second-order accuracy in both time and space makes it more 

accurate than purely explicit or implicit methods. However, for nonlinear problems, the method may require 

iterative techniques, such as Newton's method, to solve the resulting system of equations at each time step. 

Due to its stability and accuracy, the Crank-Nicolson method is extensively used in various fields. In finance, 

it is applied to option pricing models, such as the Black-Scholes equation. In engineering, it is used for 

simulating heat conduction and diffusion processes. Its ability to handle stiff equations efficiently makes it 

suitable for numerous scientific and engineering applications. To implement the Crank-Nicolson method, 

one typically discretizes the spatial domain into a grid and applies the method to each grid point, resulting 

in a system of linear equations that must be solved at each time step. This often involves using matrix solvers 

or iterative methods to handle the implicit nature of the scheme [30-34, 50-55]. 
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The weighted average method is a numerical technique used to solve partial differential equations 

(PDEs) by discretizing the spatial and temporal derivatives. This method is particularly effective for 

equations that model physical phenomena involving diffusion, convection, and reaction processes. In the 

weighted average method, the PDE is discretized using finite differences, where the derivatives are 

approximated by differences between function values at discrete grid points. The method employs a 

combination of forward, backward, and central differences to approximate the derivatives, assigning 

weights to these differences to balance accuracy and stability. The key steps in implementing the weighted 

average method are discretization where the domain of the PDE is divided into a grid of points in both space 

and time. The spatial derivative is approximated using a weighted average of forward and backward 

differences, while the temporal derivative can be handled using an implicit or explicit scheme. The weights 

are chosen to optimize the stability and accuracy of the method. The discretized PDE is transformed into a 

system of algebraic equations that can be solved using numerical linear algebra techniques. The weighted 

average method is widely used for solving nonlinear PDEs such as the Burgers-Fisher equation, where it 

efficiently captures the interaction between convection, diffusion, and reaction terms. It is particularly useful 

in fluid dynamics, heat transfer, and other areas where high accuracy and stability are required. By 

appropriately choosing weights, the method can achieve high accuracy in approximating derivatives also 

the method is robust and can handle stiff problems, where traditional methods might fail. It can be adapted 

to various types of PDEs and boundary conditions [19-25, 33-37]. 

Researchers have employed various methods to tackle the Burgers-Fisher equation, including 

integral transforms, wavelet Galerkin methods, finite difference schemes, and pseudospectral methods. 

These approaches aim to obtain accurate solutions and explore the equation's behavior under different 

conditions. Additionally, new algorithms and heuristic schemes have been proposed to address the 

challenges posed by the generalized Burger-Fisher equation, further advancing the understanding and 

application of this fundamental model [20-40]. 

However, this study introduces and explores the application of the weighted average method for 

solving the Burger-Fisher equation, a nonlinear partial differential equation (PDE) of considerable interest 

in various scientific disciplines. By employing this numerical technique, the research contributes to 

expanding the toolbox of methods available for tackling nonlinear PDEs. The study advances the 

understanding and application of the weighted average method, a numerical approach that involves 

discretization of PDEs using forward, backward, and central differences. Through convergence and stability 

analyses, the research elucidates the efficacy and computational requirements of this method, providing 

valuable insights for future studies in numerical analysis and computational mathematics.  The comparison 

of results between the weighted average method and exact solutions demonstrates the accuracy and 

reliability of the proposed approach in approximating solutions to the Burger-Fisher equation. The small 

errors observed indicate that the method yields highly accurate results, making it suitable for practical 

applications where precision is essential. The study's findings have practical implications for researchers 

and practitioners working in fields where the Burger-Fisher equation arises, such as fluid dynamics, 

population dynamics, and reaction-diffusion systems. The ability to accurately solve this equation using the 

weighted average method enhances the understanding of complex phenomena and facilitates the 

development of predictive models for real-world scenarios. Despite its high computational power 

requirements, the weighted average method offers a computationally efficient approach for solving 

nonlinear PDEs like the Burger-Fisher equation. By leveraging mathematical packages like MATLAB and 

MAPLE, researchers can effectively implement this method to obtain numerical solutions with reasonable 

computational resources. The insights gained from this study extend beyond the specific problem of solving 

the Burger-Fisher equation and can be applied to a wide range of nonlinear PDEs encountered in diverse 

scientific and engineering disciplines. The principles and methodologies developed in this research serve as 

a foundation for addressing similar challenges in other contexts. 

 

 

 

MATERIALS AND METHODS 
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1.1. Basic governing equation  

 

The generalized form of the Burgers-Fisher equation is given as:  
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When 1 , equation (1) becomes; 
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Which can be written as; 
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2.0 SOLUTION OF BURGER-FISHER EQUATION 

 

2.1.    The Exact Solution of the Burger-Fisher Equation  

Consider the Burger-Fisher equation in (1) subject to the initial condition   
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and the exact solution is given by  
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Note that for 1 , the exact solution is  
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2.2. The 𝜽-scheme: 

 

 Suppose we have a Partial Differential Equation  
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The 𝜃-scheme for the above is given as; 
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So we have  
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There are three most used values of , i. e, 1,5.0,0  
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For 𝜃 = 0, we have the Forward Euler Method:  
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For 𝜃 = 1, we have the Backward Euler Method:  
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For
2

1
 , we have the Crank-Nicolson Method:  
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Which is also known as the weighted average Method.  

 

The Crank-Nicolson scheme was introduced by John Crank and Phyllis Nicolson in 1947. It is a 

finite difference scheme which is used to approximate the solution of nonlinear differential equation. It is 

sometimes called a semi-implicit method. The Crank-Nicolson scheme uses the weighted average of half of 

the higher order derivative calculated at n+1time level and the other half at n time level. The solution of the 

Crank-Nicolson method involves a system of tridiagonal matrix to be solved at each time level. The Crank-

Nicolson method is a competitive algorithm for the numerical solution of one-dimensional problems for the 

heat equation. It requires great computational power and its calculation is carried out using mathematical 

packages like MAPLE, MATLAB.   
 
  

2.3. The Weighted Average Method for Burgers-Fisher Equation  

 
The weighted average method is a method that involves discretization of the equation being considered 

using the forward difference, backward difference and central difference. The weighted average method is 

a numerical method which has been said to converge faster to the exact solution than the other analytical 

methods. It is a difference method that involves discretizing the spatial derivatives and the time derivative.  

For the numerical value approximation using the weighted average method, the following notations 

are used: ∆𝑥 to represent the spatial step length and ∆𝑡 to represent the time step length. The numerical 

solution of 
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Consider the Burger-Fisher equation given in (2), to discretize the equation, we use the following procedure:  
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2. Forward difference  
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Discretizing 𝑢𝑡 by forward difference and 𝑢𝑥𝑥 𝑎𝑛𝑑 𝑢𝑥 by central difference  
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Discretizing 𝑢𝑡 by forward difference and 𝑢𝑥𝑥 𝑎𝑛𝑑 𝑢𝑥 by central difference explicitly  
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The weighted average of (4) and (5) gives the weighted average scheme of the Burger-Fisher equation. That 

is, (4) + (1 − 𝜃) (5)  
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If
2

1
 , the scheme becomes; 

http://ojs.upsi.edu.my/index.php/EJSMT/index


Exploring the Efficacy of the Weighted Average Method for Solving Nonlinear Partial Differential Equations: A 

Study on the Burger-Fisher Equation 

67 










































)2(
2

1
)2(

2

1

)(

)(
2

)1(

11

1

1

11

12

1

1

1

1

11

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

in

i

n

i

n

i

n

i

uuuuuu
x

t

uu
x

ut
uutuu




 

(22) 

We then obtain  
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Multiplying (23) by 2, we have,  
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2.4.   Stability Analysis  

 
To perform the stability analysis of this weighted average method for the Burger-Fisher equation, Von 

Neumann stability analysis will be used. However, the Von Neumann stability analysis is applicable to linear 

partial differential equation. Since the Burger-Fisher equation is a nonlinear partial differential equation, it 

has to be linearized.  

 

Recall that the Burger-Fisher equation is given as  
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To linearize this, the nonlinear term )1( u  will be expanded by Taylor series expansion around an 

equilibrium state say U ,i.e. Uu  , where u  is a constant. So we have,  
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Substituting into the Burger-Fisher equation, we have  
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Neglecting higher order terms, we have,  
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Using the difference equation, that is; 
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By simple cross multiplication, we have; 
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If 0U , the have;  
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We define the error approximation as; 
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And by Fourier transform, we have that; 
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Dividing all through by 𝑒𝑖𝑘𝑚𝑥 gives; 
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Using the identity
xx eex sin , the above becomes; 
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Which implies  
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2.5.     Convergence Analysis  
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The truncation error is given by 
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Expanding the right hand side by Taylor Series, we have that the weighted average method is of order two 

that is, ))(,)(( 22 txO   

 

 

 

 

 

 

 

 

 

 

 

RESULTS AND DISCUSSION 

 
The weighted average method solution of the Burger-Fisher equation is derived as  
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For any selected value of 𝛼 𝑎𝑛𝑑 𝛽. 

  

The method is tested for various parameters and the results are given below  

 
Table 1: Comparison of the weighted average method solution and exact solution of the Burger-Fisher’s equation 

with 1.0,1.0,01.0,2,1  txt . 

  

x Weighted average method Exact Error 

0.1 0.568180911 0.568319984 0.000139073 

0.2 0.580246091 0.580542305 0.000296214 

0.3 0.592247089 0.5926666 0.000419511 

0.4 0.604203077 0.604679085 0.000476008 

0.5 0.616115377 0.616566505 0.000451127 

0.6 0.62796343 0.628316188 0.000352758 

0.7 0.639706243 0.639916097 0.000209853 

0.8 0.651304278 0.651354865 5.05866E-05 

0.9 0.662702171 0.662621837 -8.0334E-05 

  
 

 

 

 

 

 

Table 2: Comparison of the weighted average method and exact solution of the Burger-Fisher’s equation with 

5.0,4.0,3.0,2.0,1.0,1,1.0,001.0,2,1  txxt  

x t Weighted Average method Exact Error 

1 0.1 0.673707099 0.673707099 0 
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 0.2 0.721115178 0.721115178 0 

 0.3 0.76404758 0.7640476 1.98E-08 

 0.4 0.802183888 0.802183889 5E-10 

 0.5 0.835483527 0.835483537 1.01E-08 

 
Table 3: Comparison of the weighted average method and exact method of the Burger-Fisher’s equation with 

5.0,4.0,3.0,2.0,1.0,2,1.0,001.0,2,1  txxt  

x t Weighted Average Method Exact Error 

2 0.1 0.772941659 0.772942259 0.0000006 

 0.2 0.8099983 0.809998434 0.000000134 

 0.3 0.842241311 0.842241313 0.000000002 

 0.4 0.869891523 0.869891526 2.5E-09 

 0.5 0.893309405 0.893309406 9E-10 
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Table 4: Comparison of the weighted average method and exact method of the Burger-Fisher’s equation with 

5.0,4.0,3.0,2.0,1.0,3,1.0,001.0,2,1  txxt  

x t Weighted Average Method Exact Error 

3 0.1 0.848771745 0.848771748 2.3E-09 

 0.2 0.87544664 0.875446642 1.9E-09 

 0.3 0.897981931 0.897981931 3E-10 

 0.4 0.916827302 0.916827304 1.7E-09 

 0.5 0.932453258 0.932453309 5.06E-08 

 

3.1. Graphical representation of results  

 

 

Figure 1: Comparison of the weighted average method solution and exact solution of the Burger-Fisher’s equation 

with 1.0,1.0,01.0,2,1  txt  
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Figure 2: Comparison of the weighted average method and exact solution of the Burger-Fisher’s equation with 

5.0,4.0,3.0,2.0,1.0,1,1.0,001.0,2,1  txxt  

 

 
 

Figure 3: Comparison of the weighted average method and exact method of the Burger-Fisher’s equation with 

5.0,4.0,3.0,2.0,1.0,2,1.0,001.0,2,1  txxt  
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Figure 4: Comparison of the weighted average method and exact method of the Burger-Fisher’s equation with 

5.0,4.0,3.0,2.0,1.0,3,1.0,001.0,2,1  txxt  

 

 

DISCUSSION OF RESULTS  

 
The results presented in Tables 1 and 2, along with the graphical representations in Figures 1, 2, and 3, 

provide valuable insights into the performance of the weighted average method for solving the Burger-

Fisher equation. 

 

Comparison of Numerical and Exact Solutions 

 

- In Table 1, the comparison between the numerical solutions obtained using the weighted average method 

and the exact solutions at different spatial locations (x) for a fixed time (t = 0.1) reveals small errors. 

Similarly, Table 2 compares the solutions at different times (t) for fixed spatial locations (x = 1, 2, 3). 

 

- The observed errors between the numerical and exact solutions are negligible, indicating the accuracy of 

the weighted average method in approximating the solutions to the Burger-Fisher equation. 

 

Implications for Method Accuracy 

 

- The small errors observed suggest that the accuracy of the weighted average method is high when applied 

to the Burger-Fisher equation. This finding is crucial for ensuring the reliability of numerical solutions 

obtained through this method. 

 

- The implication that smaller changes in the time level (∆𝑡 → 0) lead to higher accuracy underscores the 

importance of controlling numerical parameters, such as time step size, to achieve precise results. 

 

 

 

 

Graphical Representation 
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- Figures 1, 2, and 3 visually depict the comparison between the numerical and exact solutions, with the red 

crosses representing the solutions obtained using the weighted average method and the blue circles 

representing the exact solutions. 

 

- The close proximity of the data points in the graphs further illustrates the small errors between the 

numerical and exact solutions, reinforcing the accuracy of the weighted average method. 

 

Practical Considerations 

- The findings highlight the practical utility of the weighted average method for solving the Burger-Fisher 

equation with high accuracy. Researchers and practitioners can rely on this method to obtain reliable 

numerical solutions for various applications in fields such as fluid dynamics, population dynamics, and 

reaction-diffusion systems. 

 

- The results also emphasize the importance of fine-tuning numerical parameters, particularly the time step 

size, to ensure optimal accuracy when using the weighted average method. 

 

 

SUMMARY 

 
The study utilized the weighted average method to tackle the Burger-Fisher equation, a nonlinear partial 

differential equation (PDE). Employing both explicit and implicit discretization techniques, the method was 

applied to approximate solutions. To gauge its efficacy, the study conducted convergence and stability 

analyses. Notably, the weighted average method demanded significant computational resources, 

necessitating the utilization of mathematical software like MATLAB and MAPLE. At each time step, the 

method yielded a tridiagonal matrix system, which was solved using MAPLE17. The study compared the 

solutions obtained via the weighted average method with exact solutions, enabling a comprehensive 

assessment of its accuracy. A line graph was generated to visually represent the relationship between the 

numerical and exact solutions at different time steps. Overall, the study demonstrated the practical 

applicability of the weighted average method in solving the Burger-Fisher equation, shedding light on its 

computational requirements, convergence properties, and stability characteristics. 

 

 

CONCLUSION 

 
In conclusion, this study highlights the effectiveness of the weighted average method in addressing 

nonlinear partial differential equations, with a specific focus on the Burger-Fisher equation. Through 

rigorous analysis, it was determined that the method exhibits unconditional stability and second-order 

accuracy when applied to this equation. Comparison between numerical solutions obtained using the 

weighted average method and exact solutions revealed a high level of agreement, with negligible errors 

observed. This indicates the method's accuracy and reliability in approximating solutions to the Burger-

Fisher equation. Overall, the findings underscore the suitability of the weighted average method as a viable 

approach for solving nonlinear partial differential equations, offering researchers a valuable tool for 

addressing complex mathematical problems in various fields of study. 
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