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Abstract 

 
The mathematical modeling of Nipah virus transmission, incorporating the bat-to-pig-to-human pathway, is essential 

for understanding this disease dynamics and optimizing control measures. Nipah virus, which naturally resides in 

animals, particularly fruit bats, spreads to humans via intermediate hosts like pigs. This research work highlights the 

significance of including this pathway in mathematical models for several crucial reasons. Firstly, it aids in 

comprehending zoonotic transmission, essential for designing effective control strategies. Secondly, it facilitates early 

detection and intervention by encompassing bats, pigs, and humans in the model. Monitoring factors such as bat 

population dynamics, pig infections, and human exposure enables timely intervention to prevent or mitigate outbreaks. 

Moreover, the complexity of Nipah virus transmission involving multiple species underscores the need for 

multifaceted control measures. We present a detailed mathematical model for Nipah virus transmission, including 

equations for human, pig, and bird populations. The model is rigorously analyzed, including the calculation of the 

basic reproduction number, the local stability of disease-free equilibrium, and the global stability of the equilibrium. 

Sensitivity analysis is performed to identify parameters with the most significant impact on disease dynamics. Optimal 

control strategies for the Nipah virus, incorporating personal prevention, treatment, biosecurity, and public health 

interventions, are developed and analyzed. Numerical simulations demonstrate the effectiveness of these control 

measures in reducing human and pig infections.  

This research equips health practitioners with valuable insights and tools to better understand, prevent, and manage 

Nipah virus infections. Incorporating the bat-to-pig-to-human transmission pathway into mathematical models, 

provides a more holistic view of the disease's dynamics and enables health practitioners to implement more effective 

strategies for disease prevention and outbreak control. 

 
Keywords: Nipah virus, Mathematical modeling, Bat-to-pig-to-human transmission, Control strategies, zoonotic 

transmission 

 

 

INTRODUCTION 

 
Nipah virus infection is a viral zoonotic ailment brought about by the Nipah virus (NiV), which belongs to 

the Henipavirus genus. The primary zoonotic host responsible for transmitting the virus to humans and 

animals, notably livestock such as pigs and horses, is fruit bats, also known as flying foxes. Nipah virus 

(NiV) derived its name from the Malaysian village where it was first identified in 1998 [1, 2, 3]. The initial 

outbreak had devastating consequences, with over 300 cases and 100 fatalities among pig farm workers in 

Malaysia and Singapore. Subsequently, nearly yearly outbreaks have been documented in Southeast Asia, 

with a particular focus on Bangladesh and eastern India [4, 5, 6]. As of February 2023, this year has already 

witnessed 10 reported cases, resulting in 7 tragic deaths in Bangladesh and this marks the sixth outbreak of 

Nipah virus in India since the initial report in 2001, which occurred in Siliguri town, West Bengal, resulting 
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in 66 cases and a case fatality rate (CFR) of 68% [1, 7, 8, 9]. Subsequently, five more outbreaks have been 

recorded: one in Nadia district, West Bengal (5 cases, CFR: 100%), another in Kozhikode and Malappuram, 

Kerala, in 2018 (comprising 23 cases, including confirmed and probable, with a CFR of 91%). In 2019, an 

isolated case was reported in Ernakulum, Kerala, and the patient survived. Then, in 2021, one case was 

documented in Kozhikode, Kerala, with a CFR of 100% [8, 10, 11, 12]. 

The virus can be transmitted to humans through the consumption of raw date palm sap and fruit 

that has been contaminated with secretions from bats, including saliva and urine. Additionally, transmission 

can occur through close contact with an infected animal or its bodily fluids. In the event of an infection, 

person-to-person transmission is possible, typically through close contact and via nasal and respiratory 

secretions, blood, and urine [11, 13, 14]. This type of transmission most commonly occurs within healthcare 

settings or among caregivers of individuals infected with NiV. It is worth noting that patients exhibiting 

respiratory symptoms are more likely to facilitate the spread of NiV. 

Nipah Virus (NiV) infection can result in a spectrum of illness, spanning from mild to severe, which 

may include conditions such as encephalitis, and in some cases, it can be fatal. During the outbreak in 

Malaysia and Singapore, Nipah virus infection was linked to close contact with pigs infected with the virus 

[8, 14, 15, 16]. In contrast, in regions like Bangladesh and India, where Nipah virus infection is more 

prevalent, exposure has been associated with the consumption of raw date palm sap and contact with bats. 

It's worth noting that human-to-human transmission has been documented in these areas, and exposure to 

other individuals infected with Nipah virus is also considered a risk factor for contracting the disease [1, 

18].  

Diagnosing a patient with a clinical history of Nipah virus (NiV) infection involves a combination 

of tests during both the acute and convalescent phases of the disease. In the early stages, it is crucial to 

attempt virus isolation and conduct real-time polymerase chain reaction (RT-PCR) from throat and nasal 

swabs, cerebrospinal fluid, urine, and blood [17, 18, 19]. As the infection progresses, the use of antibody 

detection through enzyme-linked immunosorbent assay (ELISA) for both immunoglobulin G (IgG) and 

immunoglobulin M (IgM) can be valuable in confirming the diagnosis [18, 19, 20]. In cases where the 

disease results in a fatality, confirming the diagnosis may require immunohistochemistry on tissues 

collected during an autopsy, as this may be the only available method to establish the presence of the virus 

[14, 21, 22]. The treatment of Nipah virus infection primarily involves supportive care, as there is currently 

no specific antiviral medication available. Due to the potential for person-to-person transmission, adhering 

to standard infection control practices and employing proper barrier nursing techniques are vital in 

preventing hospital-acquired infections (nosocomial transmission) [18, 23]. Although the drug ribavirin has 

demonstrated effectiveness against the virus in laboratory settings, its clinical usefulness in human 

investigations remains uncertain and inconclusive [11]. Passive immunization, utilizing a human 

monoclonal antibody that targets the Nipah G glycoprotein, has shown benefits in post-exposure therapy in 

the ferret model [18, 24, 25]. 
To prevent Nipah virus infection, individuals should avoid contact with sick pigs and bats in 

endemic areas and refrain from consuming raw date palm sap. Enhanced surveillance and increased 

awareness are essential to prevent future outbreaks. Research efforts should focus on gaining a better 

understanding of the ecology of bats and Nipah virus, including exploring questions related to the 

seasonality of disease within the reproductive cycles of bats. Reliable laboratory assays for early disease 

detection in communities and livestock should be developed, and raising awareness about transmission and 

symptoms is crucial in reinforcing standard infection control practices, especially in healthcare settings to 

prevent human-to-human infections (nosocomial). A promising subunit vaccine that uses the Hendra G 

protein, which produces cross-protective antibodies against both Hendra virus and Nipah virus, has been 

employed in Australia to safeguard horses against Hendra virus. This vaccine holds significant potential for 

providing protection against henipaviruses in humans as well [18, 25, 26, 27, 28]. 

Mathematical modeling is a valuable tool for understanding the transmission dynamics of Nipah 

virus, predicting outbreaks, optimizing control strategies, allocating resources effectively, and guiding 

research and public health efforts [29, 30, 31]. These models play a crucial role in the proactive management 

of Nipah virus and other infectious diseases, ultimately helping to save lives and reduce the impact of 

outbreaks [32, 33, 34, 35, 36]. Numerous researchers have delved into the pathology and epidemiology of 

Nipah virus disease, yet only a limited number of models have been developed, as outlined below. Biswas, 

for instance, examined the disease dynamics using a foundational SIR mathematical model [37]. He 

proceeded to delve deeper into this model, exploring potential control and prevention strategies through 
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optimal control measures [37, 38]. Another SIR model also underwent optimization through the use of 

optimal control [39, 40]. Mondal et al. introduced a novel SEIR model designed to explore disease dynamics 

by incorporating two control parameters - the number of quarantined individuals and enhanced personal 

hygiene. These parameters had not been previously integrated into any Nipah virus dynamic model [41]. 

Shah et al. put forth an SEI model that takes into account the transmission of the disease from bats to humans 

and among humans. Furthermore, it considered a mode of disease transmission that hadn't been previously 

addressed - the transmission from human to human through unprotected contact with the deceased body of 

an individual infected with Nipah virus [42]. Durgesh et al., in their work [43], proposed an SVEIR model 

by considering interactions between bats and humans. They also delved into the role of vaccination in 

controlling the disease's spread. Lastly, Nita et al. introduced an SEIHD epidemic model with bat-human 

interaction [44], incorporating control measures such as insecticide spraying, bat burial, self-prevention, 

and hospitalization. Their research also delved into the dynamics of the disease and optimal control 

measures. 

However, few or no research works incorporate bat-to-pig-to-human transmission pathway in 

mathematical modeling of Nipah virus which is crucial for several reasons. Firstly, it aids in comprehending 

zoonotic transmission, as Nipah virus naturally resides in animals, particularly fruit bats, and spreads to 

humans via intermediate hosts like pigs. This understanding is essential for designing effective control 

strategies. Secondly, it facilitates early detection and intervention by encompassing bats, pigs, and humans 

in the model. Monitoring factors such as bat population dynamics, pig infections, and human exposure 

enables timely intervention to prevent or mitigate outbreaks. Furthermore, the complexity of Nipah virus 

transmission, involving multiple species, underscores the need for multifaceted control measures. 

Mathematical models can assess the effectiveness of various strategies, including culling infected pigs, 

reducing bat-pig contact, enhancing biosecurity on pig farms, and implementing vaccination programs, all 

of which can significantly reduce the risk of human Nipah virus infections. Additionally, models 

considering multiple transmission pathways assist in the efficient allocation of limited resources, enabling 

decision-makers to target interventions where they are most needed based on the dynamics of bat-to-pig 

and pig-to-human transmission. Lastly, by comprehensively studying the bat-to-pig-to-human pathway, 

models can guide strategies to reduce the spillover of the virus from its natural reservoir (bats) to humans, 

which is key to reducing the overall burden of Nipah virus. In summary, the inclusion of the bat-to-pig-to-

human transmission pathway in mathematical modeling of Nipah virus is essential for gaining a deeper 

understanding of disease dynamics and optimizing control measures. This approach promotes more 

effective disease prevention and outbreak management, ultimately reducing the risk of Nipah virus 

infections in humans and this is the significant of this study. 

 

 
 

Figure 1: Nipah Virus Transmission and Mortality 
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MATERIALS AND METHODS 

 
Model Formulation 

This current framework for the transmission of monkeypox involves a total population that is divided into 

three distinct groups: 
HN  for humans, 

PN  for pigs, and 
BN for birds.  

HN , which represents the human population, is further categorized into subgroups based on 

individuals' infection status within the population. These subgroups include those susceptible to the Nipah 

Virus (
HS ), individuals who have been infected

HI , those under treatment to prevent further spread (
HT ), 

and those who have recovered (
HR ) from the infection.  

PN represents the pig population and is also subdivided into four categories: susceptible pigs (
PS

) not infected with the Nipah virus, infected pigs (
PI ), Nipah virus-infected pigs undergoing treatment (

PT

), and pigs that have recovered from the virus (
PR ).  

BN represents the bird population and is divided into two compartments: susceptible birds that 

have not been infected by the virus (
BS ) and infected birds (

BI ) that carry the Nipah virus.  

This division enables us to study the disease dynamics separately within these three primary groups 

and also assists in analyzing the interactions and transmission dynamics of the Nipah Virus among humans, 

pigs, and birds. This approach offers a clearer understanding of how the disease spreads and allows for an 

examination of the impact of various control measures on human-to-human, pigs-to-human, pigs-to-pigs, 

birds-to-pigs, and birds-to-human transmission. The insights gained from this model can be valuable in 

developing effective strategies to manage and control Nipah virus outbreaks. 

 

The force of Nipah virus infection is denoted as  
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Detailed parameters used in the model are described in Table 1, and a schematic diagram of the 

Nipah virus is presented in Figure 1. 

 
Table 1: Description of parameters used in the model 

 

Parameters Description 

H  Inclusion rate into the human class 

P  Inclusion rate into the pig population 

B  Inclusion rate into the bird society 

H  Adjustment infections state of infected human 

P  Adjustment infections state of infected pigs 

B  Adjustment infections state of infected birds 

H  Treatment rate of infected human 

P  Treatment rate of infected pig 

H  Recovery rate of infected human 

P  Recovery rate of infected pig 

H  Natural death rate of human class 

P  Natural death rate of pig population 

B  Natural death rate of bird society 

H  Nipah virus induced rate of infected human class 

P  Nipah virus induced rate of infected pig population 

B  Nipah virus induced rate in bird society 
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H  Transmission rate of human class 

P  Transmission rate of pig population 

B  Transmission rate of bird society 
 

 

Figure 2: Schematic diagram of Nipah Virus Transmission 
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The Nipah Virus Model’s Equations 
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Mathematical Analysis of the Nipah virus Model 

 

Positivity and boundedness of the solution 

 

The differential equation for the human class, 
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is given by: 
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Upon substituting the model system of equations for the human class from equation (2) into the preceding 

equation and correctly performing the elimination process, the result will be  
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(4) 

For the pig population, the equivalent differential equation is written as: 

 PPPPPP
P TIN
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(5) 

Furthermore, for the bird society, the equivalent differential equation is written as: 
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BBBBB
B IN

dt

dN
   

(6) 

Theorem 1: Let  BBPPPPHHHH ISRTISRTIS ,,,,,,,,, be the solution of the monkey pox model equation 

(2) with the initial conditions in a biologically feasible region 
BPH  with:  
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We then have that  is non-negative invariant. 

Using the integrating factor method to solve equation (4) gives, 
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Similarly, by utilizing the integrating factor approach to solve equation (5), we obtain: 
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Lastly, by utilizing the integrating factor approach to solve equation (6), we obtain: 
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Where 0B at DFE 
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(12) 

Here, we have confirmed that the model is well-posed mathematically and epidemiologically, and 

the solutions for the different compartments are non-negative. Equations (10), (11) and (12) lead us to the 

conclusion that the set is positively invariant for time (t). 
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Existence of the Nipah Virus equilibrium state 

 
The existence of the Nipah Virus equilibrium state refers to a specific condition in the mathematical 

model where the Nipah virus is not present or has been eradicated.  

 

Thus, 00 HS , 00 PS and 00 BS  
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Then, the equations (4), (5) and (6) become 
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We now have the DFE point to be 
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Basic reproduction number 

 
The basic reproductive ration of Nipah Virus model’s system equation (2) is obtained via the method of 

next generation matrix formulated by Diekmann and Heesterbeek. Using )( 1 FVRn   

the new infection terms, 
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Let, 
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(15) 

 

So we have 
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(16) 

 

and 
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(17) 
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(18) 

Therefore, we have the basic reproduction number, )( 1 FVRn  , for the human class, pig population 

and bird society to be  
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
  and 

BB
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




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(19) 

 

respectively. 

Local Stability of Disease-Free Equilibrium 
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To determine the local stability of the Nipah virus DFE, we calculate the eigenvalues of the Jacobian matrix 

estimated at the DFE. The Jacobian matrix describes the linearization of the model equations of the Nipah 

virus around the DFE, and its eigenvalues provide information about the stability of the Nipah virus DFE.  

 
Theorem 2:  

If every Jacobian eigenvalue of the system has a negative real value, the disease-free equilibrium of the 

model equation (2) is locally asymptotically stable (LAS). 

 
Proof 
We evaluate the eigenvalues of the Jacobian matrix of the model’s equation in (2) at DFE point  
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
in order for us to prove the above-mentioned theorem. The Jacobian matrix   

 

 BBPPPPHHHH ISRTISRTISJ ,,,,,,,,,  of the model is given as: 

 

 





























































f

e

d

c

b

J

BBB

PP

P

BB

BBPPP

HH

H

BBPP

BBPPHHH

000000000

00000000

00000000

00000000

00000000

0000000

00000000

00000000

0000000

000000



















 

 

 

 

 

(20) 

 

where 
HHHHHb   ; 

HHHc   ; 
PHPPPPd   ; 

PPPe   ; and 
BBBBf    

 

Now, for the eigenvalue computation, we have the following steps:  

 

 













































f

e

d

c

b

IJ

BBB

PP

P

BB

BBPPP

HH

H

BBPP

BBPPHHH

000000000

00000000

00000000

00000000

00000000

0000000

00000000

00000000

0000000

000000

  

 

 

(21) 

 

From above matrix (21), 
H 1

 as   H
happens to be the only non-zero element in the first column. 

We delete the first row and first column to get a new matrix 1J  as; 
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
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(22) 

 

Similarly in column 3 of above matrix (22),   H
is the only entry and so

H 2
. We then have a 

new matrix 2J as 
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(23) 

 

Similarly in column 2 in the matrix above, we have c as the only entry. Hence c3 ,  

Following the above procedure, writing out the emerging Jacobian matrix and deleting elements where 

necessary we obtain the eigenvalues of the 10 – dimensional system as: 

fedbc BppHH  10987654321 ,,,,,,,,, 

 (24 

learly, the eigenvalues are real, negative and not complex which shows that the Nipah virus DFE is locally 

asymptotically stable.  

 
Theorem 3 

When 1HR , 1PR  and 1BR , then the disease-free equilibrium is locally asymptotically stable. 

 
Proof 

We obtained in the eigenvalues that  HHHHH    4
,  PPPP  5  

and  BBBB  10  

 
Lemma 1 

When 1HR , 1PR  and 1BR respectively, the disease-free equilibrium for the human class, pig 

population and bird society are asymptotically stable. 

 

The eigenvalues above can be factorized as; 
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(25) 

From (23) we can write that; 
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(26) 

 

The inequalities (25) and (26) remain true and negative (stable) if and only if 1HR , 1PR  and 1BR

. This proves lemma 1. 

Moving forward with the proof of Theorem 3, we establish that 1HR , 1PR  and 1BR holds. 

 
Global Stability of Disease-Free Equilibrium (DFE) 

 
Theorem 4 

The non-negative equilibrium point of the model (2) is globally asymptotically stable, if 10 G . 

 
Proof 

To establish the global stability of this equilibrium
0E , we construct the following Lyapunov function 

following the method used in [46]. 
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The derivative of G  along the solution path of (2) by direct calculation gives 
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(28) 

We expand the above equation and collect the positive and negative terms separately, where the 

positive term is P and the negative term is N, then 
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(29) 

 

Similarly, 
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(30) 

If NP  , then 
dt

dG
will be negative definite along the solution path of the system. And thus, implies that, 

only at Nipah disease free equilibrium (E0) would 0
dt

dG
. This indicates that the system is globally stable 

at the Nipah virus disease free equilibrium. 

 
Existence of the endemic equilibrium points 

The endemic equilibrium points are defined as  0),(,0,0,0),(,0,0,0),( *** tStStS BPH  satisfying

 0'''''''''  BBPPPPHHHH ISRTISRTIS , by equating equation (2) to zero, we have 
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where; 
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(32) 

 

Simplify the equation accordingly we have, 
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(33) 

 

Using the conventional methods, at
0E , the existence of the endemic equilibrium points are established. 

 

 

Sensitivity analysis of the reservoirs-human model 

 
In sensitivity analysis, different parameters are varied within their respective plausible ranges, and the 

model's response is observed. This variation can be done individually (one-at-a-time sensitivity analysis) or 

collectively (global sensitivity analysis) for multiple parameters simultaneously. 

As a result, we analyze the reproduction number of the model which looks for variation and the 

impact of a parameter’s value on reproduction number whether it is raised or lowered. 
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Definition 

The definition of the Normalized Forward-Sensitivity Index of a variable U, which is differentially 

dependent on a parameter V, is as follows: 

U

V

V

U
X U

V .



  

(34) 

 

 Regarding the model parameters, we will now calculate the sensitivity indices for the 

fundamental reproduction number
HR ,

PR , and 
BR . 
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Sensitivity index for 

H  

 The normalized forward sensitivity index of 
H is given by: 
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R
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(35) 

 By Computing and evaluating the derivatives in (35), we have; 
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 (36) 

Then, 
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


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1 H

H

R
X   (37) 

As a result, we get the sensitivity index
H . 

The sensitivity indices of all other parameters in the fundamental reproduction number are also 

obtained using the same procedure, which is consistently applied.  

 

Table 2: Sensitivity indices pertaining to additional parameters within the context of the basic reproductive ration. 

Parameters Values Source Index 

sign 

Sensitivity Index 

value 

H  0.0015 Scot et. al [46] + 1 

P  0.02 Scot et. al [46] + 1 

B  0.2 Scot et. al [46] + 1 

H  0.0001 Zewdie and Gakhar [47] - -0.04668316138 

P  0.0002 Zewdie and Gakhar [47] - -0.001240694789 

H  0.0000421 Zewdie and Gakhar [47] - -0.01965361094 

P  0.16 Tyagi et. al [48] - -0.9925558313 

B  0.45 Scot et. al [46] - -0.375000000 

B  0.75 Zewdie and Gakhar [47] - -0.6250000000 

P  0.001 Scot et. al [46] - -0.006203473945 

H  0.002 Tyagi et. al [48] - -0.9336632276 

H  0.0002 Zewdie and Gakhar [47] + 1 

P  0.01 Zewdie and Gakhar [47] + 1 

B  0.1 Zewdie and Gakhar [47] + 1 
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Interpretation of Sensitivity Indices 

 A negative sensitivity index indicates an inverse relationship between the parameter and the 

reproduction number. In contrast, a positive sensitivity index implies that an increase in the parameter value 

leads to a higher value of the reproduction number. This analysis helps identify which parameters strongly 

influence the results of our analysis. 
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Optimal Control Strategies for Nipah virus 

Here are some key components of optimal control for Nipah virus: we lower the transmission rate by 

 11 C , where 
1C connotes personal prevention (practice handwashing, avoid contact with sick birds or 

pigs, avoid eating or drinking products that could be contaminated by bats and avoid contact with the blood 

or body fluids of any person known to be infected; 
2C connotes the effort of treatment on the infected human 

class. 3C  connotes biosecurity measures and public health intervention 
4C connotes the effort of treatment 

on the pig population. Based on these assumptions, the following set of new equations is derived: 
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Analysis of the Model Incorporating Preventive Measures 

Within this segment, we constructed a model centered on an objective functional framework, 

showcasing the potential for manipulation through the utilization of Pontryagin's Maximum Principle. By 

focusing on the optimal configuration outlined in the system of equation (18), we have highlighted the 

emergence of a significant control concern, which we subsequently elucidated before delving into its 

comprehensive global optimization. The intricate task of selecting the most efficacious strategies is 

encapsulated by the objective functional denoted as H. The overarching pre-established aim entails the 

minimization of the populace in all classes, all within a designated time interval [0, K].  

Let   LCCCCL  4321 ,,, be Lebesgue measurable on  1,0 ,  
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Where     4,3,2,1,1,010  itCi   

Then, we have the objective function, O , to be 

    dtCUCUCUCUITTTITTTCCCCO
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constraint to (38) 
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(40) 

The terminal time point is represented by the value K , while the coefficients 
1T  to 

4T  correspond to the 

weight constants attributed to the virus within distinct groups. The primary objective of this section centers 

on the reduction of the operational expenditure as indicated by equation (19). Furthermore, our investigation 

extends to encompass an analysis of the social cost ,,,
2

33

2

22

2

11 CUCUCU and 
2

44CU  

associated with the described scenario.  

In order to fulfill the aim of addressing the control problem, we endeavor to identify the functions 

        ,,,,
*

4

*
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1 tCtCtCtC  such that 
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(41) 

 

Existence of an Optimal Control Solution 

Theorem: From equation (20), Consider  CO , subject to (18) and with t=0 be the initial condition, then 

given the optimal control to be        tCtCtCtC
*
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1 ,,,  such that 
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             LCCOtCtCtCtCO  ,min,,,
*

4

*

3

*

2

*

1  

Proof: Because the integrand of O  demonstrates convexity concerning the control measures C  the 

existence of an optimal control solution is ensured. 

Next, it is essential to demonstrate the optimal solution. The Lagrangian is expressed as follows: 
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The Hamiltonian function is given as; 
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Given  BBPPPPHHHHi ISRTISRTISi ,,,,,,,,,,   are distinct and non-overlapping variables.  

We are now poised to employ the essential conditions to the Hamiltonian ( H ) for analysis.  

To unveil the adjoint equation and fulfill the transversality condition, we leverage the Hamiltonian H . 

Through the process of differentiation, we ascertain the values concerning the variables 

BBPPPPHHHH ISRTISRTIS ,,,,,,,,,  with respect to the Hamiltonian. This leads us to the formulation of 

the adjoint equation, which is expressed as follows: 
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Given the conditions of transversally to be  

 BBPPPPHHHHi ISRTISRTISi ,,,,,,,,,,  . 

In pursuit of minimizing the Hamiltonian, denoted as H, in relation to the optimal control variables, we 

undertake the process of differentiation with respect to 4321 ,,, CCCCC  . By doing so, we derive a set of 

equations, which we subsequently set to zero in order to solve for the optimal control configuration. This 

procedure yields the sought-after optimal control solution. 
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(55) 

 

By simplification, we obtain solution for the optimal control to be 
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Now, making use of the boundary conditions, the solution is given has 
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Where, 
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Proved. 

Numerical Solution 

In this simulation, we offer a means to observe the progression of the disease over time, track alterations in 

various parameters, and evaluate the effectiveness of interventions. This platform enables researchers and 

public health authorities to acquire valuable insights into the disease's behavior across different scenarios 

and to assess the efficacy of diverse control tactics. The state variables' initial conditions are as follows:, 

200HS , 150HI , 140HT , 120HR , 250PS , 200PI , 190PT , 150PR , 150BS  and 

140BI . Also, 
H =20; 

P =4; 
B =2; 

H =0.58; 
P =0.01. The parameter values needed for the 

simulation are displayed in Table 3. 

 

Figure 3: Trajectories solution of the Nipah model 
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Figure 4: Trajectories solution for optimizing human infected class 

 

Figure 5: Trajectories solution for optimizing human treatment class 

 

Figure 6: Trajectories solution for optimizing human recovered class 
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Figure 7: Trajectories solution for optimizing pig infection population 

 
Figure 8: Trajectories solution for optimizing pig treatment population 

 

RESULTS AND DISCUSSION  

 
Figure 6 shows all the compartments of the Nipah virus model and this serves several important purposes 

in understanding and analyzing the dynamics of the Nipah virus transmission, also this enhances the model's 

explanatory power, aids in understanding Nipah virus transmission processes, and supports decision-making 

for control and prevention strategies. 

 

The positive implications of the control measures implemented in the mathematical model of Nipah virus, 

as indicated by Figure 7, are noteworthy. These measures, which encompass personal prevention practices 

such as handwashing, avoidance of contact with sick birds or pigs, refraining from consuming potentially 

contaminated products, and minimizing contact with infected individuals, along with the treatment of 

infected individuals, have yielded a significant reduction in the human infection class compartment. This 

decline in human infections signifies the effectiveness of the control measures in curtailing the spread of 

the virus. It reflects a successful effort to mitigate the transmission of Nipah virus from its natural reservoirs, 

such as bats and intermediate hosts like pigs, to humans. The reduction in human infections is not only a 

testament to the positive impact of these control measures on public health but also an indication of the 

potential to prevent or manage outbreaks more effectively. By employing such strategies, we can enhance 

our capacity to safeguard communities from Nipah virus infections and, in turn, reduce the associated risks 

to human health and well-being. 
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The positive implication of the control measures depicted in Figure 8 of the mathematical model of Nipah 

virus is the dynamic effectiveness of these measures in managing the outbreak. As the optimal control of 

human treatment class increases to a certain level, it indicates that a proactive approach to treating infected 

individuals is yielding positive results. This implies that access to medical care, isolation, and treatment for 

infected patients are contributing to their recovery and survival. The reduction in the human treatment class 

after reaching a certain level suggests that these control measures are successfully curbing the spread of the 

virus, leading to a decline in the number of individuals requiring treatment. This demonstrates the potential 

of early detection, improved healthcare, and the application of appropriate treatment in reducing the severity 

of Nipah virus infections and preventing further transmission. Ultimately, the dynamic nature of the model 

highlights the adaptability and effectiveness of these control measures in containing the outbreak and 

safeguarding public health. 

 

In Figure 9, the observed increase in the human recovered class compartment as the optimal control measure 

is increased, specifically through personal prevention and treatment of infected individuals, carries several 

positive implications. Firstly, it signifies the effectiveness of these control measures in curbing the spread 

of the virus and aiding in the recovery of infected individuals. Personal prevention measures, such as 

handwashing and avoiding contact with sick birds or pigs, not only protect individuals from initial exposure 

but also break the chain of transmission, ultimately reducing the number of new infections. Secondly, the 

emphasis on the treatment of infected individuals is vital for improving their chances of recovery and 

survival. This leads to a higher proportion of individuals transitioning to the recovered class, indicating a 

positive outcome in terms of reducing the disease's impact. Overall, the observed increase in the human 

recovered class compartment highlights the success of these control measures in mitigating the Nipah virus's 

impact on human health and underscores the importance of continued efforts in their implementation and 

promotion. 

 

The implication of the control measures, which include biosecurity measures and public health intervention 

as well as the effort of treating the pig population, is evident in Figure 10. As the optimal control is 

increased, leading to a reduction in the pig infection population compartment, several significant benefits 

are realized. First and foremost, this reduction in pig infections represents a lower risk of Nipah virus 

transmission from pigs to humans, thereby decreasing the potential for human infections. Moreover, it 

reflects the effectiveness of biosecurity measures and public health interventions in containing the spread 

of the virus in pig populations. This reduction not only safeguards public health but also has economic 

implications by preserving the pig farming industry. In summary, the decrease in pig infections signifies the 

success of these control measures in minimizing the risk of Nipah virus outbreaks, protecting both human 

health and the livelihood of pig farmers. 

 

In Figure 11, the observed increase in the pig treatment population compartment from day 0 to day 15, 

followed by a reduction as optimal control measures are implemented, carries several positive implications. 

Firstly, it reflects the effectiveness of the biosecurity measures and public health interventions being put 

into action. This increase signifies that more pigs are receiving timely treatment and care, which is crucial 

in limiting the spread of the Nipah virus among the pig population. As these measures are scaled up, the 

subsequent reduction suggests that the virus's impact on the pig population is diminishing, which is a 

significant step in preventing the virus from reaching humans through the zoonotic pathway. Ultimately, 

this trend underlines the success of these control measures in safeguarding both animal and human health, 

emphasizing the importance of early intervention and comprehensive biosecurity practices in reducing the 

risk of Nipah virus transmission. 

 

 

CONCLUSION 

  
In conclusion, the comprehensive analysis of various compartments in the Nipah virus mathematical model, 

as illustrated in Figures 6 to 11, provides valuable insights into the dynamics of Nipah virus transmission. 

These visual representations enhance the model's explanatory power and aid in understanding the processes 

involved in Nipah virus transmission. The positive implications of the control measures, including personal 
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prevention practices, treatment of infected individuals, biosecurity measures, and public health 

interventions, are evident in the reduction of human and pig infections, as well as the increase in the pig 

treatment population. These outcomes underscore the effectiveness of these control strategies in mitigating 

the spread of the virus, protecting public health, and supporting the livelihood of pig farmers. Overall, these 

findings emphasize the importance of proactive measures in preventing and managing Nipah virus 

outbreaks, ultimately reducing the risks to human health and well-being. 
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