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Abstract 
 

In this work, the elastic moduli of silica based borotellurite glass system with compositional formula; [(TeO2)0.7 

(B2O3)0.3]1-x (SiO2)x with x= 0.0, 0.1, 0.2, 0.3 and 0.4 was studied using theoretical models. Makishima and Mackenzie, 

bond compression, Rocherulle, and ring deformation models were employed in the calculation of the elastic moduli, 

Poisson ratio, packing density, dissociation energy, cross-link density, average stretching force constant and the glass 

network ring size of the studied glasses. The values of the elastic moduli obtained from the Makishima and Mackenzie 

model were found to be lower than those obtained from the Rocherulle model and the value from the bond compression 

model was reported to be highest among the three models. In all the models, the elastic moduli increased with an 

increase in the concentration of silica in the glass composition. Therefore, it satisfied the original intention of 

improving mechanical strength to achieve high Young modulus which is considered in glasses fiber drawing/ 

manufacturing.  
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INTRODUCTION 

 

Study of various properties (ranging from structural, elastic, mechanical, optical and spectroscopic 

properties) of tellurite glasses have been reported in many publications in the recent years due to their 

promising advantage over other glasses in many technological applications [1]–[4]. TeO2 composition in 

glasses is utilized to provide a high refractive index, easy fabrication, good infrared region transmittance, 

high optical nonlinearity, and low phonon energies. With boron oxide combination, the borotellurite glass 

system is expected to possess high rare earth ion solubility, greater hardness, easier fabrication as well as 

improved optical transparency [5], [6]. To obtain greater thermal and chemical stability, and when optical 

transparency is required in excitation and lasing wavelengths in most glasses, SiO2 combination is 

considered. In most glasses for special applications requiring mechanical strength, the SiO2 composition is 

mostly considered [7].    

 

 Elastic and mechanical properties are essential in determining glass applicability in many 

technological applications [8], [9].  Glasses developed with high Young’s modulus have been given much 

consideration in research and high strength glass fibers’ manufacturing. This consideration has prompted 

glass scientists to begin to work on theoretical models for calculations of elastic moduli as well as the 

Poisson ratio of various glass compositions put under study.   
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Foremost of them all is the work of Makishima and Mackenzie which focusses on the elastic moduli and 

Poisson ratio determination using the packing density, dissociation energy per unit volume of oxide 

constituent as well as the chemical composition of the glasses under study [10]. Rocherulle and coworkers 

modified the Makishima and Mackenzie model by introducing some modifications to packing factor 

expression. The authors also introduced a thermodynamic factor through substitution of oxygen with 

nitrogen in the vitreous network of glasses and found good agreements between the calculated elastic moduli 

and their corresponding experimentally measured values [11]. Another theoretical model introduced mainly 

for the calculation of bulk modulus on the assumption that bond lengths in glass networks are changed by 

an isotropic deformation not bond angles [12]. The ring deformation model is an extension of the bond 

compression model which calculates the ring size in a 3-D network of atoms in the glass structure [13]. 

  

 In this work, we employ the Makishima and Makenzie model, the Rocherulle model, the bond 

compression model, and the ring deformation model in our calculations of elastic moduli, Poisson ratio, and 

other parameter explaining the nature and the structure of the glasses under study.   

 

 

MODELS  

 

This section presents the four theoretical models adopted in this work for the study of the elastic properties 

of the studied glasses. The models used include the Makishima-Mackenzie model, the Rocherulle model, 

the bond compression model, and the ring deformation model. 

 

Makishima and Mackenzie model 

The Makishima and Mackenzie model proposed a theoretical approach to determining the elastic moduli of 

oxide glasses with consideration to the chemical composition (xi) of the constituting oxide, individual 

oxides’ packing densities (Vi), and their corresponding dissociation energies (Gi) [14]. The glass Young 

modulus is expressed in terms of the packing density (Vt), and the dissociation energy (Gt) as; 

 

𝐸𝑚 = 2𝑉𝑡 ∑ 𝐺𝑖𝑥𝑖𝑖  = 2Vt Gt                                                                                (1)    

 

From the oxides’ packing density,  𝑉𝑡 can be determined by the next equation 

 

𝑉𝑡 (
𝜌

𝑀
) ∑ 𝑉𝑖𝑥𝑖𝑖                                                                                           (2)      

                                                                                                                         

Where M = glass molecular weight, ρ = glass density, xi = ith component’s molar fraction (i), and Vi is 

calculated for an oxide (Ax Oy) as: 

 

 
𝑉𝑖 = 𝑁𝐴(4𝜋 3⁄ )(𝑥𝑅𝐴

3 + 𝑦𝑅𝑂
3)    (3) 

 

where RO and RA represent the ionic radii of oxygen and cation respectively [15]. In the model of Makishima 

and Mackenzie, bulk modulus (Km), Shear modulus (Gm) and Poisson ratio (σm)  for oxide glasses on any 

component are calculated as follows: 

 

 
𝐾𝑚 = 1.2𝑉𝑡𝐸                              (4) 

 

𝐺𝑚 = (3𝐸𝐾 9𝐾 − 𝐸⁄ )                          (5) 
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𝜎𝑚 = (𝐸 2𝐺𝑚⁄ − 1)                        (6) 

 

Rocherulle Model 

 

Modified expression of the Makishima and Mackenzie model was proposed by Rocherulle et al. (1989). 

The packing density, Vi in the Makishima-Mackenzie model is replaced with Ci  which is expressed as 

follows: 

 

 
𝐶𝑖 = 𝑁𝐴(4𝜋𝜌 3𝑀⁄ )(𝑥𝑅𝐴

3 + 𝑦𝑅𝑂
3 ) (7) 

For glasses of poly component nature, the factor 𝐶𝑡 is therefore  expressed as follows:  

 

𝐶𝑡 = ∑ 𝐶𝑖𝑥𝑖𝑖                                                                            (8) 

                       𝐶𝑡 = ∑
𝜌𝑖

𝑀𝑖
𝑖 𝑉𝑖𝑥𝑖                                                                        (9)    

                   

The Young Modulus (Er), bulk modulus (Kr), and the shear modulus (Gr) are calculated as in equations (1), 

(4), and (5) respectively. The basic difference between the two models is that the Makishima and Mackenzie 

model takes into consideration the bulk density and molecular weight of the glass, while the Rocherulle 

model considers the individual oxides’ density and molecular weights into consideration [11].  

 
Bond Compression and Ring Deformation Models 

                         

The theoretical model of bond compression takes into consideration the atomic networking in a material 

and the bond stretching force constants between them to theoretically estimate the elastic characteristics of 

the material [16]. For single oxide glass systems, the bulk modulus is obtained as; 

 

         𝐾𝑏𝑐 =
𝑛𝑏𝐹𝑟2 

9
                                                                                           (10) 

 

The expression for a multicomponent oxide glasses is given as; 

 

 𝐾𝑏𝑐 = (𝜌𝑁𝐴 9𝑀)⁄ ∑ (𝑥𝑛𝑓�̅�𝑟2)𝑖𝑖                                                              (11) 

 

Where �̅� the average stretching force constant, and nb is the bond number per unit volume and r is the 

cation-anion bond length.  

The bond number per unit volume is calculated as; 

 

 
𝑛𝑏 = (𝑛𝑓𝜌𝑁𝐴 𝑀⁄ )                                                   (12) 

 

 𝑛𝑓 is the number of bonds per unit glass formula, 𝑁𝐴 is Avogadro’s number, ρ is the glass density, and 𝑀 

is the glass molecular weight [17]. The stretching force constant (𝑓) is deduced for multi-component glass 

using the expression as reported by [18] as; 

 

 F̅ =
∑ (xnff)ii

∑ (xnf)ii
                             (13) 

 

The calculations of Poisson’s ratio (𝜎𝑏𝑐) and the corresponding average crosslink density (�̅�𝑐) of the glasses 

are deduced as in equations (3.64) and (3.65) respectively. 
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 𝜎𝑏𝑐 = 0.28(�̅�𝑐)−0.25       (14) 

 

 �̅�𝑐 =
1

𝜂
∑ (𝑥𝑛𝑐𝑁𝑐)𝑖𝑖                                               (15) 

where 𝑛𝑐= oxide (𝑖) cross-link number per cation and 𝑁𝑐  = cation number per unit glass formula. 

The total number of cations per unit glass formula for a multicomponent glass system (𝜂) is obtained as; 

 

 𝜂 = ∑ (𝑥𝑁𝑐)𝑖𝑖             (16) 

   

𝐾𝑏𝑐 and 𝜎𝑏𝑐 calculated is used to calculate the Young, shear, and longitudinal moduli. The ring deformation 

model is used to theoretically estimate the atomic ring size of the glass system.  The model uses the 

experimental bulk modulus (Ke) values and the bending force constant (Fb) values to estimate the atomic 

ring size [19]. In the proximation process, the average stretching force constant is used in place of Fb.   

Equation (17) is used in the determination of the atomic ring size as; 

 

 𝐾𝑒 = 0.0106𝐹𝑏(𝑙)−3.84            (17) 

 

The vale l represents the atomic ring size and is defined as the diameter of the external ring. The ring 

perimeter can be determined using l as bond number x bond length divide by 𝜋 [20]. 

 

 

RESULTS AND DISCUSSIONS 

 
In this section the results and discussions of the elastic moduli, Poisson ratio, packing density, dissociation 

energy, packing factor, bond length, stretching force constant other parameters calculated theoretically 

using the Makishima-Mackenzie model, Rocherulle model, Bond compression model and Ring deformation 

model. 

 

Makishima-Mackenzie Model 

 

The Makishima-Mackenzie model proposes a theoretical approach to determine the Young modulus of 

oxide glasses based on the oxides’ atomic packing and their bond strengths. The model uses the bulk 

molecular weight and densities of the glasses [21].  The model proposed a correlation between the average 

dissociation energy and the packing density of the constituent atoms/oxides of glass material to its elastic 

moduli [15]. 

 
Table 1: Packing Density, Dissociation Energy, Young Modulus, Bulk modulus, Shear Modulus and Poisson Ratio 

for [(TeO2)0.7 (B2O3)0.3]1-x (SiO2)x glass system 

 

x(mol%) Vt (cm-3) Gt (kJ/cm3) Em (GPa) Km (GPa) Gm (GPa) σm 

0 0.4086 61.1700 49.9887 24.5108 21.5452 0.1601 

0.1 0.4169 61.5030 51.2762 25.6499 21.9726 0.1668 

0.2 0.4343 61.8360 53.7102 27.9913 22.7547 0.1802 

0.3 0.4404 62.1690 54.7569 28.9371 23.1116 0.1846 

0.4 0.4639 62.5020 57.9879 32.2799 24.1496 0.2006 
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Table 1 presents the values of the packing density, dissociation energy, Young modulus, bulk modulus, 

shear modulus, and Poisson ratio obtained using the theoretical model proposed by Makishima and 

Mackenzie [10].  

 

 
Figure 1: Variation of packing density and dissociation energy with molar fraction of SiO2 for [(TeO2)0.7 (B2O3)0.3]1-

x (SiO2)x glass system   

 

Figure 1 and Table 1 illustrate the variation of the packing density and the dissociation energy [(TeO2)0.7 

(B2O3)0.3]1-x (SiO2)x Glass system against the SiO2 molar fraction. Both the packing density and the 

dissociation energy of the glasses were observed to have increased from 0.408605 to 0.463889 and 61.170 

to 62.502 kJ/cm3 respectively. Although the packing density depends on the glass’s bulk density, the 

increase in the packing density observed in these glasses might not be associated with density increase. The 

packing density value increase with SiO2 concentration might be mostly associated with the decrease in the 

molar volume [22]. The molar volume decrease leads to a decrease in the interstitial spaces between atoms 

of the glass network. This increases interatomic connectivity and glass rigidity (El-Moneim, 2012). 

 

 The increase in the dissociation energy [(TeO2)0.7 (B2O3)0.3]1-x (SiO2)x Glass system with an increase 

in the SiO2 concentration may be due to the higher dissociation energy of SiO2 (64.5 kJ/cm3)  introduced 

into the system. The SiO2 substitutes are more TeO2 with lower dissociation energy (54 kJ/cm3) than B2O3 

with higher dissociation energy (77.9 kJ/cm3) than SiO2 [21]. The dissociation energy increase may also be 

associated with the increase in the TeO3 conversion to TeO4 with the higher energy of dissociation [24]. 
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Figure 2: Elastic moduli for the [(TeO2)0.7 (B2O3)0.3]1-x (SiO2)x glass system 

 

Figure 2 illustrates the variation of elastic moduli with SiO2 concentration increase. The Young, bulk, and 

shear moduli increased from 49.9887 to 579879 GPa, 24.5108 to 32.2799 GPa, 21.5108 to 24.1496 GPa 

with increased SiO2 concentrations. The values of the theoretically calculated elastic moduli are higher 

compared to the experimentally obtained elastic moduli values. This might be due to the increase in both 

the average packing density and dissociation energy resulting from the substitution of lower dissociation 

energy of TeO2 (54 kJ/cm3) molecule [25], with higher dissociation energy of SiO2 (64.5 kJ/cm3) molecule 

[26]. Although the moduli values calculated using the Makishima and Mackenzie are higher than the 

experimentally obtained values, they presented the same value increase with an increase in the SiO2 

concentration. The values’ difference according to Makishima could reach up to 30% [11]. The Poisson 

ratio presented by the Makishima and Mackenzie model for the studied rice husk silicate borotellurite glass 

system have lower values than the experimentally obtained. 

 

Rocherulle Model 

 

Rocherulle’s model proposed a modification to the theoretical model presented by Makishima and 

Mackenzie. The model takes into consideration the individual oxide elastic properties in determining the 

overall elastic properties of oxide glasses. Individual oxide densities and molecular masses were considered 

instead of the bulk glass density and molecular weight used in the Makishima- Mackenzie model. 

 
Table 2: The Packing Factor, Young Modulus, Bulk Modulus, Shear Modulus and Poisson Ratio for [(TeO2)0.7 

(B2O3)0.3]1-x (SiO2)x glass system  

 

x(mol%) Ct (cm-3) Er (GPa) Kr (GPa) Gr (GPa) σr 

0 0.5940 72.6700 51.7992 28.6965 0.2662 

0.1 0.5963 73.3485 52.4852 28.9439 0.2671 

0.2 0.5986 74.0301 53.1773 29.1922 0.2 

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

E
la

st
ic

 M
o
d

u
li

 (
G

P
a
)

Molar Fraction of SiO2

Young Modulus Bulk Modulus Shear Modulus



EDUCATUM JSMT Vol. 7 No.2 (2020) 

ISSN 2289-7070 / e-ISSN 2462-2451 (18-30) 

https://ejournal.upsi.edu.my/index.php/EJSMT/index 

24 

0.3 0.6009 74.7147 53.8753 29.4415 0.2689 

0.4 0.6032 75.4024 54.5793 29.6919 0.2697 

 

Table 2 presents the packing density, elastic moduli and the Poisson ratio values for [(TeO2)0.7 (B2O3)0.3]1-x 

(SiO2)x Glass system. The packing density of the glasses increased from 0.5940 to 0.6032 as the 

concentration of SiO2 increased from 0 to 40%. The increase in the values of the packing density may be 

attributed to a higher packing factor (Ci) of SiO2 (0.617) compared to the substituted TeO2 (0.522) [27]. The 

increase may be due to an increase in network connectivity and rigidity [28]. The Poisson ratio value 

increased from 0.2662 to 0.2697 with SiO2 concentration increase from 0 to 40%. The Poisson ration 

increase in associated with an increase in glass connectivity and rigidity. The increase can also be associated 

with an increase in the concentration of TeO4 in the network [29].  

 

 
Figure 3: Elastic moduli for the [(TeO2)0.7 (B2O3)0.3]1-x (SiO2)x glass system 

 
Table 3: Oxides’ Coordination numbers, packing densities (Vi and Ci), Dissociation Energies (Gi), Bond Length (r), 

and Stretching Force constant (F) 

 

Oxide CN Vi (cm3/mol) Gi (kJ/cm3) Ci r (nm) F (Nm-1) 

SiO2 4 14.000 64.500 0.617 0.161 432 

B2O3 4 20.800 77.900 0.762 0.138 660 

TeO2 4 14.700 54.000 0.522 0.199 216 

Er2O3 6 38.276 27.319 0.815 0.225 149 
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Figure 3 and Table 3 presents the variation of the elastic moduli of [(TeO2)0.7 (B2O3)0.3]1-x (SiO2)x Glass 

system with a molar fraction of SiO2.   The Young, bulk and shear moduli increased from 72.6700 to 75.4024 

GPa, 51.7992 to 54.5793 GPa and 28.6965 to 29.6919 GPa respectively as the SiO2 concentration was 

increased from 0 to 40%. The increase in the elastic moduli reflects the experimental trend of the elastic 

moduli increase with SiO2 concentration, although the Rocherulle model data presented higher values of 

the elastic moduli compared to the experimental data. The increase in the elastic moduli is associated with 

an increase in the glass rigidity in the glass network as confirmed by the increased packing density and 

decreased molar volume of the glass system [30], [31]. The moduli of elasticity are structural configuration 

dependent parameters [22].  

 

Bond Compression and Ring Deformation Models 

 

The bond compression model presents a theoretical approach to the determination of the bulk modulus of 

oxide glasses. The model proposes a dependence of material’s bulk modulus on the average stretching force 

constant and the bond per unit volume number of the glass system under study. The bulk modulus 

dependence on the average ring size of the glass network is also presented in this model. 

 
Table 4: Bond per unit volume number (nb), Bulk modulus, Bulk modulus ratio (Kbc/Ke), Atomic ring size (ℓ) and 

Stretching Force Constant (F) for [(TeO2)0.7 (B2O3)0.3]1-X (SiO2)X glass system 

x nb x 1028 (m-3) Kbc (GPa) Kbc/Ke Ɩ (nm) F (N/m) nc 

0 5.9553 64.5712 3.0026 0.6329 349.2 2.4615 

0.1 6.1700 66.8996 3.0326 0.6325 357.48 2.4252 

0.2 6.5296 70.7982 3.1719 0.6344 365.76 2.3871 

0.3 6.8552 74.3286 3.2875 0.6360 374.04 2.3471 

0.4 7.2020 78.0883 3.3166 0.6329 382.32 2.3051 

 

Figure 4 and Table 4 illustrate the variation of the bond number per unit volume (nb) and the average 

stretching force constant of the [(TeO2)0.7 (B2O3)0.3]1-x (SiO2)x Glass system. The value of the nb increased 

from 5.9553 x 1028 to 7.2020 x 1028 m-3 with SiO2 concentration increase from 0 to 40% in the glass system. 

The increase may be associated with atomic close packing observed in the molar volume decrease. This is 

also confirmed with the observed increase in the packing density of the glasses. The increase may also be 

attributed to the increase TeO3 to TeO4 units’ conversion with increasing concentration of SiO2 in the 

network [15], [32], [33]. 
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Figure 5: Bond per unit volume and the average stretching force constant variation with the molar fraction of SiO2 

for [(TeO2)0.7 (B2O3)0.3]1-X (SiO2)X glass system 

 

The average stretching force constant increased from 349.2 to 382.32 N/m as the SiO2 molar fraction in the 

[(TeO2)0.7 (B2O3)0.3]1-x (SiO2)x Glass system increased from 0 to 40%. The increase in the value may be 

attributed to the substitution of TeO2 with a lower stretching force constant (216 N/m) with SiO2 (432 N/m). 

The increase might also be due to shorter bond length of Si-O in SiO2 (161 nm) as compared to that of Te-

O in TeO2 (199 nm) [15], [25], [34]. 

 

 The elastic moduli variation of [(TeO2)0.7 (B2O3)0.3]1-x (SiO2)x glass system with SiO2 molar fraction 

is presented in Figure 6 and Table 6. The bulk, shear, longitudinal and Young moduli increased from 

64.5712 to 78.0882 GPa, 43.7697 to 52.0663 GPa, 122.9308 to 147.51.01 GPa, 107.1079 to 127.7959 GPa 

respectively. The increase in the elastic moduli might be associated with increased connectivity and rigidity 

of the glasses. It may also be attributed to the increasing concentration of TeO4 in the glass network with 

the introduction of more SiO2 [16], [35]. 
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Figure 6: Elastic moduli variation with the molar fraction of SiO2 for the [(TeO2)0.7 (B2O3)0.3]1-X (SiO2)X  

glass system 

 

Table 6: The Elastic Moduli and Poisson for [(TeO2)0.7 (B2O3)0.3]1-X (SiO2)X glass system 

 

x Kbc (GPa) Gbc (GPa) Lbc (GPa) Ebc (GPa) σbc 

0 64.5712 43.7697 122.9308 107.1079 0.2235 

0.1 66.8996 45.1806 127.1403 110.6358 0.2244 

0.2 70.7982 47.6245 134.2976 116.7052 0.2252 

0.3 74.3286 49.7871 140.7114 122.0996 0.2262 

0.4 78.0883 52.0663 147.5101 127.7959 0.2272 

 

The Poisson ratio value for the [(TeO2)0.7 (B2O3)0.3]1-x (SiO2)x glass system as shown in Table 6 increased 

from 0.2235 to 0.2272 with the increase in the SiO2 concentration. The increase in the Poisson ratio is 

always connected to glass rigidity and network connectivity. Hence, the increase may be attributed to an 

increase in material (atomic) packing with an increase in the SiO2 concentration [33]. 
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Figure 7: Atomic ring size variation with molar fraction of SiO2 for [(TeO2)0.7 (B2O3)0.3]1-X (SiO2)X  

glass system 

 
Figure 7 presents the value of the atomic ring size for [(TeO2)0.7 (B2O3)0.3]1-x (SiO2)x glass system. The value 

has not shown any uniformity with an increase in the SiO2 concentration. A decrease in the atomic ring size 

is usually attributed to an increase in network connectivity and rigidity. It is associated with an increase in 

the close packing of atoms in the glass system. This may be due to the conversion of TeO3 to TeO4 and the 

formation of more BO3 with non-bridging oxygen [25], [30].  

 

 

CONCLUSION 

 
Makishima and Mackenzie, bond compression, Rocherulle’s, and ring deformation models were employed 

in this work for the theoretical study of the elastic moduli of [(TeO2)0.7 (B2O3)0.3]1-x (SiO2)x glass system. 

The values of the Young, bulk, and shear moduli calculated using the Makishima and Mackenzie model 

increased from 49.9887 to 57.9879 GPa, 24.5708 to 32.2799 Gpa, and 21.5452 to 24.1496 Gpa respectively 

with an increase in SiO2 concentration. On the Rocherulle model, the moduli increased respectively from 

72.6700 to 75.4024 Gpa, 51.7992 to 54.5793 Gpa, and 28.6965 to 29.6919 Gpa. Also, the values on the 

bond compression model increased respectively from 107.1079 to 127.7959 Gpa, 64.5712 to 78.0883 Gpa, 

and 43.7697 to 52.0663 Gpa, in addition to the calculated longitudinal modulus which increased from 

122.9308 to 147.5101 Gpa. The Poisson ratio value ranged from 0.1601 to 0.2006, 0.2000 to 0.2697, and 

0.2235 to 0.2272 respectively for Makishima and Mackenzie, Rocherulle, and bond compression models. 

The atomic ring size was also calculated using the ring deformation model and the ring size values indicated 

non-uniformity with SiO2 concentration. Increase in the elastic moduli shown by all the models suggested 

that the addition of SiO2 improved moduli of elasticity in glasses and the observed wide variation in the 

values of the moduli of elasticity suggested that only one of the models can be used for the study of the 

elastic moduli of the studied glasses. 
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