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ABSTRACT Aquaculture has a vital function in ecology, environment, and economy. Without adequate 

monitoring and management, aquaculture might have negative environmental repercussions. In terms of 

managing and design the industry's long-term operations, it is necessary to map the distribution of 

aquaculture ponds. Aquaculture ponds can now be detected and mapped using remote sensing. A large-

scale mapping can be performed fast due to the recent advancements in cloud computing and big data. In 

this study, 10 m Sentinel 2 images were used to classify aquaculture in Sungai Udang, Pulau Pinang. This 

study aims to compare three machine learning classifiers such as Support Vector Machine (SVM), Random 

Forest (RF) and Classification and Regression Tree (CART) that available in the Google Earth Engine 

(GEE) cloud computing platform in mapping aquaculture ponds. From 2016 to 2020, the SVM, CART, 

and RF generated 97.35%, 93.86%, and 93.48% overall accuracy, respectively. In general, SVM was the 

most accurate among the three machine learning classifier algorithms in classifying the three classes 

(aquaculture, vegetation, and urban). The area of the aquaculture pond derived from Google Earth Pro is 

nearly identical to the classified image's region. This study shows that GEE is useful in mapping 

aquaculture ponds on a small scale using a cloud-based and free platform. The result of this study can be 

used by a variety of organisations to manage and monitor aquaculture pond fish production and 

environment degradation. 
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ABSTRAK Akuakultur memainkan peranan penting dalam aspek ekologi, alam sekitar dan ekonomi. 

Tanpa pemantauan dan pengurusan yang baik, akuakultur berkemungkinan untuk menyebabkan dampak 

negatif kepada alam sekitar. Dalam aspek mengurus dan merancang operasi jangka panjang industri ini, 

pemetaan kolam akuakultur amat diperlukan. Kolam akuakultur kini dapat dikesan dan dipetakan dengan 

menggunakan kaedah penderiaan jauh. Kini, pemetaan berskala besar dapat dilaksanakan dengan pantas 

kerana kemajuan terkini dalam pengkomputeran awan dan data besar. Dalam kajian ini, gambar 10m 

Sentinel 2 digunakan untuk mengklasifikasikan akuakultur di Sungai Udang, Pulau Pinang. Kajian ini 

bertujuan untuk membandingkan tiga mesin pengelasan pembelajaran seperti Support Vector Machine 

(SVM), Random Forest (RF) dan Classification and Regression Tree (CART) yang terdapat pada platform 

pengkomputeran awan, Google Earth Engine (GEE) dalam pemetaan kolam akuakultur. Dari 2016 hingga 

2020, SVM, CART, dan RF masing-masing menghasilkan ketepatan keseluruhan sebanyak 97.35%, 

93.86%, dan 93.48%. Antara tiga algoritma pengelasan pembelajaran mesin ini, SVM algoritma 

pengelasan pembelajaran mesin paling tepat dalam mengklasifikasikan tiga kelas (akuakultur, tumbuh-

tumbuhan, dan bandar). Kawasan kolam akuakultur yang diperoleh dari Google Earth Pro adalah hampir 

sama dengan kawasan gambar yang dikelaskan. Kajian ini menunjukkan GEE dapat digunakan untuk 

memetakan kolam akuakultur dalam skala kecil melalui platform bebas berasaskan awan. Hasil kajian ini 

boleh digunakan oleh pelbagai organisasi untuk mengurus dan memantau pengeluaran ikan kolam 

akuakultur dan kemerosotan alam sekitar 

 

 

Kata kunci: Google Earth Engine, Pemetaan Akuakultur, Penginderaan jauh, Sungai 

Udang, Pulau Pinang. 

 

1. Introduction  

From 2001-2018, global aquaculture production of farmed water animals increases on 

average at 5.3 % per annual (FAO, 2020). A growth of world fish supplies up till 187 

million tons with aquaculture like world production of capture based on projection data 

from the World Bank in year 2030 (The World Bank, 2013). 

This demonstrates that aquaculture is quickly growing. In the field of inland fisheries, 

aquaculture, and capture fisheries, Malaysian Fisheries produced 1.85 million ton 

fisheries production with a projected gain of RM 14.5 billion (DOF, 2020). Latest analyses 

by the Department of Fisheries Malaysia revealed that, agricultural gross national (GDP) 

in Malaysia is presently about 12.5% with the approximate commercial worth of RM 7.5 

billion (DOF, 2020). Agriculture makes up around 92% of Malaysian level of self-

sufficiency, with more than 18 000 farmers locally. The aquaculture sector in Malaysia has 

generated an estimated 391,000 million ton, which is cost about RM 3.1 billion (Azra et 

al., 2021). 

  Fish is the only major food item and is still mostly harvested from the wild rather than 

from farms. Historically, marine catch constitutes over 80% of the world's supply of fish. 

In recent times, however, catch fisheries could not keep up with the increasing requests, 

and numerous marine fisheries have already been overfished. The rate of fish 

consumption increased higher than supply from marine capture fisheries. The demand 

on the harvesters has risen, which leads to increasing pressure on many commercial 
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fisheries and overfishing. Almost half of the known ocean fishing is fully exploited. 

Aquaculture fisheries can be more beneficial compared to captured fisheries. In terms of 

food security, worldwide figures show that aquaculture will make up for the 

deteriorating supply of seafood from captured fisheries and provide animal protein to 

increasing human population (Natale et al., 2013). Nonetheless, the rapid global 

expansion of the aquaculture sector has resulted in changes to huge regions of critical 

coastal and inland ecosystems, as well as a loss of products and services provided by 

natural resources (Pattanaik & Prasad, 2011). Besides that, bad environmental law and 

absence of correct planning and administration policies on level of international and 

national strategy (Smith et al., 2010) resulted to unsanctioned and disorganized growth 

of aquaculture and trigger the important current rate of environmental deterioration 

(Ottinger et al., 2016). The further expansion of world aquaculture creation will however 

offer a direct challenge to the management's ability to endure and human development 

of our planet. This is a global problem and is especially true of rural coastal populations 

in evolving nations (Beveridge et al., 2013; Hossain et al., 2013), because agriculture offers 

good nutrition and is a primary source of income for the poor (Ahmed & Lorica, 2002). 

The aquaculture sector pollutes freshwater bodies or rivers and water significantly in the 

surrounding waters. Wastewater produced during aquaculture is generally released 

unfiltered (Ottinger et al., 2016) producing pharmacological (He et al., 2016) and heavy 

metal storage (Liang et al., 2016), acceleration of eutrophication (Herbeck et al., 2013) and 

ensuring the accumulation of hazardous algal blooms (Keesing et al., 2011; Lee et al., 2011; 

Wang et al., 2008; Stiller et al., 2019). 

  Global statistical databases on aquaculture should be carefully assessed since there are 

evidence that certain data reported by Member States of the FAO are of doubtful 

standard. There are many causes for this, including over reporting of output levels by 

some nations (Pauly & Froese, 2012), underestimation for aquaculture volumes because 

the production volumes of huge quantities by small scale farmers in Asia and different 

areas whose production and trade information are incomplete, entering national and 

regional markets (Allison, 2011). Global aquaculture inventory and monitoring is a 

challenge and takes effort, time, and substantial expenditures (Marini et al., 2013). 

Considering that aquaculture has spread significantly throughout the world, it is 

imperative that production volume and value data on a worldwide scale be compiled, as 

well as the identification and aquaculture spatial distribution assessment on a national 

and international level. Such information is beneficial in analyzing the growing strain on 

ecosystems and the resulting environmental repercussions of this pressure (Ottinger et 

al., 2016). Additionally, improved aquaculture management via the use of remote sensing 

and geographic information systems (GIS) have been pushed (FAO, 2016). For the most 

part, until recently, the most prevalent method of obtaining data on aquaculture has 

depended on reviewing previously collected statistics data. However, there is lack of 

study regarding aquaculture pond mapping in Malaysia as there is no or limited research 

nor study have been done especially using Google Earth Engine. To the best of our 

knowledge, several studies have been done in Malaysia using Google Earth Engine for oil 

palm mapping (Shaharum et al., 2020), so this will be the first study on aquaculture pond 

mapping in Malaysia using Google Earth Engine. 
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  The Google Earth Engine (GEE) which is a cloud computing platform is particularly 

tailored to satellite image processing and allows anyone to access and use image data to 

both the public and commercial sectors (Gorelick et al., 2017). GEE is accessible to 

everyone, simple to build algorithms and can batch image data rapidly, reducing 

geographic data analytics cost and complexity, in comparison with conventional image 

processing tools. This platform allows openly sharing and validating algorithms and 

results (Xia et al., 2020). It is critical to create an aquaculture pond map for the purpose 

monitor and plan the preserved operation of aquaculture. As a result, to evaluate the 

performance of machine learning classifiers such as Random Forest (RF), Support Vector 

Machine (SVM) and Classification and Regression Tree (CART) for inland fishpond 

mapping, we will use Classification and Regression Tree (CART),  Random Forest (RF) 

and Support Vector Machine (SVM)  for inland fishpond mapping. Penang's aquaculture 

fisheries experienced a remarkable average annual growth rate of 8.2% in production and 

23% in value between 1995 and 2015. Penang's food fish production had the second 

highest wholesale value in the country, with aquaculture accounting for over 54% of the 

state's food fish production (58,736 metric tonnes valued at RM1,090.6mil). After Sabah, 

the state is now the second largest producer of aquaculture goods in the country, and the 

fish farming business has the potential to become a key driving force in the state's 

economic development. By using satellite imagery, we have identified Sungai Udang 

consists the most number of inland aquaculture ponds compare to other areas in Penang 

(Vaghefi, 2017). Sungai Udang is a fishing village located at Nibong Tebal, Penang at the 

end of Sungai Kerian towards the straits of Malacca. Number of ponds identified in 

Google Earth image for the year 2020 are 591. The total area of ponds 2.88km² and the 

shape of ponds are mostly rectangular and square, there are also some irregular shape 

ponds found. Therefore, this study aims to compare the SVM, RF and CART machine 

learning classifier algorithms that available within GEE for generating a better 

aquaculture ponds mapping across Sungai Udang, Penang. 

 

2. Literature Review 

The Food and Agriculture Organization (FAO) defines aquaculture as the cultivation of 

aquatic animals such as fish, crustaceans, molluscs, and aquatic photosynthetic 

organisms. Aquaculture industry involves either private or corporate ownership of the 

stock being grown, and it often includes the isolation of a species in a safe system 

(Beveridge et al., 2013; Naylor et al., 2000). The methods of farming are vastly different, 

but they always incorporate interventions to increase productivity, such as consistent 

storage, feeding, and predator deterrence (Campbell & Pauly, 2013; FAO, 2002). 

Aquaculture systems generate over 600 different animal species (Troell et al., 2014) such 

as, finfish (tilapia, salmon, carp, catfish, and trout), crustaceans (crabs, prawn, shrimp, 

and freshwater crayfish), and molluscs (clams, oysters, and mussels) (FAO, 2014). 

Aquaculture can be divided into several types of culture conditions that are used for the 

farming of aquatic creatures, according to the Food and Agriculture Organization (FAO, 

2002), (1) Systems for brackish water aquaculture are often placed in estuaries, bays, 
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lagoons, and fjords; (2) Mariculture (marine aquaculture) is defined as the growth of 

aquatic organisms in saltwater/seawater environments such as fjords, inshore and open 

waterways, and inland seas. (3) Freshwater aquaculture is the cultivation of aquatic 

creatures in freshwater bodies of water such as reservoirs, lakes, rivers, groundwater, and 

canals. However, for Sungai Udang, freshwater aquaculture is used for farming.  

Water management is significant in aquaculture, since it excerpts the freshwater 

shortage and degradation of water quality through increasing waste (Verdegem & 

Bosma, 2009) and pollution (Cao et al., 2007; Peng et al., 2013). This has a negative effect 

on human health and the natural environment, especially in coastal regions which is low-

lying that are ideal for fish farming and are therefore the most severely affected 

(Primavera, 2006). Aquaculture may help to provide food security and has other 

advantages in terms of economic and social, such as generating money, generating jobs 

and reducing related poverty (Paul & Vogl, 2011; Schumann et al., 2011; Slater et al., 2013; 

Smith et al., 2010).  There is already proven evidence of the social, economic, and 

environmental significance of aquaculture as a major source of  protein for a large number 

of countries, and it has the potential to substantially help alleviate global food insecurity. 

Aquaculture uses enormous quantities of water and substantially impacts water resource 

quantity and quality (Beveridge et al., 2013). With the development of the aquaculture 

sector, water contamination has emerged, and severe environmental consequences are 

caused. Bacterial and viral inflammation may lead to serious loss of productivity in the 

industry involved and may restrict growth of aquaculture. Aquaculture is a significant 

source of fertilizers, disinfectants, insecticides and other feed additives and is frequently 

applied to organisms including insects, waters, plant diseases in enormous amounts 

(Sabra & Mehana, 2015). Agricultural and wildlife biota, crop species may suffer 

toxicities, permanent damages, and loss if they come into contact with such pesticides 

(Holmstrom et al., 2003; Primavera, 2006). Additional contributions to the buildup of risk 

residues via adjacent habitat, heavy metals and other pollution from residential or 

industrial waste that has not been treated in aquaculture and across the whole food chain. 

Another environmental risk for aquaculture is the algal blooms in shallow waterways, 

since algal toxins impact the standard of cultivated species and may lead to a reduction 

or loss of whole harvests (Ottinger et al., 2016). Increasing consciousness of environmental 

effects of aquaculture, it is crucial to precisely evaluate and monitor this land use around 

the world. Understanding the connection between aquaculture development, 

environmental contamination, and the deterioration of natural resources may be gained 

through global information on the geographical extent, distribution, and variations of 

aquaculture.  

Remote sensing is the study of utilizing reflected and emitted radiation to acquire 

information about a target that is a considerable distance away. Most of the time, sensor 

data is obtained through cameras, and the result is an image. The three types of platforms 

that offer remote sensing data are: airborne, land-based, and ground-based (Barbosa et 

al., 2015). Further, remote sensing sensor may be used for both passive and active data 

acquisition. Passive remote sensing uses sunlight to get information on the ground. The 

sensor will receive the ground signal. The active remote sensing does, in fact, produce a 
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signal, and this signal is the information the object's reflected radiation sends back to the 

sensor (Joshi et al., 2016). Two forms of passive remote sensing are available: multispectral 

and hyperspectral. This study only focuses on multispectral passive remote sensing. 

Multispectral remote sensing information typically comprises of between 3 and 10 bands 

which are measured by the reflected energy wavelength. The bands comprise visible 

green, visible blue, visible red, Near-infrared (NIR), etc. Remote sensing data range from 

low resolution to high resolution in different spatial resolution. Spatial resolution defines 

the detail in the human eye in the pixel. The more specific information can be viewed and 

retrieved the greater the spatial resolution (Qu et al., 2017; Yokoya et al., 2017). However, 

remote sensing with a high resolution typically takes extra time to analyze your data. For 

example, Landsat, Worldview 2, Moderate Resolution Imaging Spectroradiometer 

(MODIS), IKONOS and sentinel are the most important for remote sensing data. Huge 

parts of global aquaculture activities happen in tropical and subtropical areas. Cloud 

cover limits the data acquisition from optical sensors and is a major constraint in tropical 

region. However, cloud cover effect is minimal in this study because the scale of study 

area is small. Remote sensing is an ideal method for the spatial assessment of aquaculture 

areas because it is cheap option compared to broad field surveys done by local authorities. 

 Besides that, it gives sight over huge areas of the Earth’s surface and even cover 

remote places which access may be troublesome. Earth observation can help in 

aquaculture management such as, site selection and mapping, environmental monitoring, 

and aquaculture ponds inventory (Ottinger et al., 2016). However, remote sensing data 

which are earth observing data have been growing enormously in terms of amount of 

data and rising degree of diversity and complexity are regarded as RS ‘Big Data’. RS ‘Big 

Data’ refers to volume, velocity, variety and complexity of remote sensing data that 

outstrip storage and processing power. Besides that, processing the huge RS ‘Big Data’ 

such as storing data, putting data into memory, processing, and evaluating data can be 

burdensome. One of the best solutions for this issue is cloud computing which process 

RS ‘Big Data’ on very powerful servers, which virtualize supercomputer for the users 

efficiently. Amazon EC2, Microsoft Azure and Google Earth Engine are examples of cloud 

computing platform for RS ‘Big Data’ processing (Ma et al., 2015).GEE is a free cloud 

computing platform unlike Microsoft Azure and Amazon EC2 are platform for cloud 

computing on a pay-as-you-go basis. It provides up to 40 years of petabyte scale remotely 

sensed imagery like Landsat, Modis and Sentinel 1, 2, 3 and 5-P including raw imagery, 

pre-processed, cloud-removed and mosaicked images which can be found in its data 

catalog. Computational time can be decreased because GEE platform is supported by the 

computing infrastructure of Google to enable simultaneous processing of geographical 

data. There is a Git repository provided by Earth Engine servers for storing and sharing 

of APIs (JavaScript and Python) script of users’ codes which can facilitate joint effort with 

other users. Code editor in GEE is a web-based Integrated Development Environment 

(IDE) is used to write, create, and execute sophisticated programs using the JavaScript 

API. The GEE’s code editor is all user friendly consists of various algorithms image 

processing, picture collecting, geometry-feature, reduction, and machine learning are just 

a few examples. which the users do not need other software to perform task. GEE's 
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explorer is a web tool for inspecting data catalogues., visualization and to run simple 

analyses by users (Gorelick et al., 2017; Kumar & Mutanga, 2018; Tamiminia et al., 2020). 

Therefore, GEE is a suitable platform for aquaculture pond mapping for management and 

monitoring. 

Machine learning is among the most dependable methods of non-linear 

classification. It is useful to comprehend the system's behaviour based on input 

observations and can estimate values without knowing the connection between data 

beforehand. This means that machine teaching is a viable option in classifying remote 

sensing pictures when the features of the whole research field cannot be fully understood 

(Lary et al., 2016). As complicated data and higher-resolution satellite imaging are readily 

available, classifiers for machine learning in remote sensing are already widely utilized 

(Pal & Mather, 2005; Pal & Mather, 2004). Even with complicated data and more input 

characteristics, machine-learning classifiers generate greater accuracy (Aksoy et al., 2005; 

Huang et al., 2012).  Few of the most common classifications include k-Nearest Neighbor 

(k-NN), SVM, RF, ARN, CART etc. While some classifiers like CART create a single 

decision-making, panel based on training data provided, RF utilizes random subsets of 

training data for several decision-making panels. Classifiers such as SVM, on the other 

side, identify a subset of training data as vectors by fitting a hyperplane that best selects 

two classes (Huang et al., 2002). In all these classification situations, most research shows 

that SVM and RF are above the level of other machine classification scenarios (Belgiu & 

Dragut, 2016; Nery et al., 2016). CART is a basic binary classifier created by (Breiman et 

al., 1984). It is based on hierarchical decision trees. The primary benefit of such structures 

is that the classification choices may be regarded as a white box system that readily 

understands and interprets input-output connections compared with multilayer neuronal 

networks (Tso & Mather, 2009). The CART algorithms' input and output are linked 

through a sequence of nodes, each of which is divided into two branches, eventually 

leading to leaf nodes that represent class labels in classification trees and continuous 

variables in regression trees, respectively. The recurrent splitting of nodes continues until 

a threshold criterion is met. CART determines the input characteristics that will result in 

the optimal split at each node based on the Gini Impurity Index (Tso & Mather, 2009). The 

split may be univariate, with decision boundaries parallel to the axis of the input feature, 

or multivariate, with input features combined linearly (Tsoi & Pearson, 1991). 

Multivariate decision boundaries provide each class boundary more flexibility. 

Tumer and Ghosh (1996) established that integrating the output of several 

classifiers for the purpose of predicting an event results in very high classification 

accuracy. This is the underlying principle of the ensemble classifier RF, which combines 

the output of several decision trees to determine the label for fresh input data based on 

the highest vote. Random Forest randomly chooses a portion of the training sample 

through replacement to construct a single tree, i.e., it employs a bagging method in which 

data is chosen from the original full training set for each tree. This may result in the same 

samples being chosen for several trees while others are not chosen at all (Breiman, 1996). 

The non-training data (out-of-bag samples) are utilized internally to evaluate the 

classifier's performance and give an impartial estimate of the generalization error. 
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Additionally, RF conducts a random selection of variables from training samples at each 

node to find the optimal split for tree construction. While this decreases the strength of 

individual trees, it decreases the correlation between them, resulting in a reduction in 

generalization error (Breiman, 2001).  To determine the optimal split, RF employs the Gini 

Index, which is a measure of impurity inside a node. The split is carried out in such a 

manner that the entropy decreases, and the information gain increases after the split. 

However, the effectiveness of tree-based classifiers is more dependent on the pruning 

techniques used than on the optimal split selection measure (Pal & Mather, 2003). RF is 

resistant to these effects since it grows trees without the need of trimming methods (Pal 

& Mather, 2005). In the area of remote sensing, SVM is one of the frequently used 

classifiers. SVM gained prominence owing to its ability to achieve high classification 

accuracy with few training sets, which is often a constraint in land use land cover 

classification situations (Mantero et al., 2005). SVM is a linear binary classifier based on 

the idea that training samples closer to class limits better distinguish a class than other 

training samples. SVM thus aims to find a perfect hyperplane separating the samples of 

the input training of different classes. These samples are collected as supportive vectors 

for the actual training, at the borders of a class and at a minimal distance from the 

hyperplanes. 

Remote sensing has been used to map aquaculture ponds in several studies, using 

many types of sensors, GEE platforms, and algorithms several recent studies regarding 

application of GEE for aquaculture pond mapping have been produced. For instance, a 

study created a flowchart for retrieving aquaculture ponds by combining existing multi-

source remote sensing data on the Google Earth Engine platform. The method of Multi-

threshold Connected Component Segmentation and the Random Forest algorithm were 

utilised to automatically retrieve aquaculture ponds using Shanghai as a study region. 

The data show that this method is capable of accurately mapping Shanghai's aquaculture 

ponds from 2016 to 2019, with a classification accuracy of 91.8 % in 2018 (Xia et al., 2020). 

Next, a study proposed using Landsat 8 images and the Google Earth Engine (GEE) 

platform to map aquaculture ponds on a country scale. The study used a decision tree 

classifier that combined spectral, spatial, and morphological characteristics to 

successfully extract aquaculture pond regions in the Chinese coastal zone in 2017, with 

an overall accuracy of 0.96 (0.94–0.97, 95 % confidence interval) and a kappa coefficient 

of 0.82. The results revealed a detailed geographical dispersion of aquaculture ponds in 

the Chinese coastal zone, with a total area of 15632.64 km2 (14386.98 km2–17924.95 km2, 

95 % confidence interval) (Duan et al., 2019). Besides that, a study of the three-decade 

evolution of aquaculture, including the spatiotemporal dynamics of both the Yellow 

River Delta (YRD) and the Pearl River Delta (PRD), during a 30-year period (PRD). Long-

term patterns of change in aquaculture are derived by merging a Sentinel-1-generated 

reference layer on existing aquaculture ponds for 2015 with annual data on water bodies 

from the Landsat archive. Significant expansion in aquaculture area were found in the 

studied target deltas, with the YRD increasing 18.6-fold between 1984 and 2016, and the 

PRD increasing 4.1-fold between 1990 and 2016. The research also uses linear regression 

analysis to find aquaculture growth hotspots for the deltas, revealing that hotspots may 
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be identified along the YRD's coastal regions and along the PRD's Pearl River. When 

compared to high-resolution Google Earth data, the proposed method detects spatio-

temporal changes in aquaculture with an overall accuracy of 89 % (Stiller et al., 2019). In 

addition, a subtle analysis was conducted which an application for the mapping of 

national coastal aquaculture ponds with new categorization schemes utilizing Sentinel-1 

series data was created using Google Earth Engine (GEE). Clustering indices relevant to 

aquaculture ponds, which use water index, texture, and geometric metrics derived from 

radar backscatter, are mostly seen in pond aquaculture. With this method, the study 

categorized using decision tree aquaculture ponds with a total accuracy of 90.16% over 

the whole area of the coastal region in Vietnam (based on independent sample 

evaluation). In order to monitor and manage aquaculture ponds effectively, wall-to-wall 

mapping and area evaluation are important. Aquaculture ponds have been shown to be 

extensively spread in the coastal region of Vietnam and are focused inside the Mekong 

River Delta and Red River delta (85.14 % of the total area) (Sun et al., 2020). Another study 

that was conducted which a decision-tree classifier was utilised to detect large-scale 

aquaculture ponds in the province of Jiangsu via the 7-fold diaphragm between 1988 and 

2018 using Landsat cloud data generated from Google Earth Engine (GEE). The results 

have shown that, in Jiangsu Provinces, the area allotted to aquaculture ponds has 

continuously increased from 660,29 km2 in 1988 to 4097,95 km2 in 2018 and three regions 

with dense distributions of aquacultural ponds have been found throughout the province 

of Jiangsu's coastlines as well as in the south and the center. The overall accuracies were 

greater than 0.91, and kappa coefficient was greater than 0.79 (Duan et al., 2020). In 

addition, a study carried out targeted at addressing a knowledge gap by development 

and evaluation on the platform of Google Earth Engine (GEE) of an automated process 

for fishpond mapping, using Sentinel-2 pictures. The workflow comprises two main 

steps: (1) an automated flooding identification approach that employs a pixel selection 

technique and an image segmentation method is used in the spectrum filtering step. and 

(2) the space filtering phase, in order to further classify flooded bodies in fishponds and 

non-fishponds through object-based features (OBF). A case study in Singra Upazila, 

Bangladesh, was condcuted to assess the effectiveness of the workflow and can effectively 

map inland fish tanks with an accuracy of 0.788. This study compared different classifis 

which are decision tree and logistics regression and found out that logistics regression is 

more accurate compared to decision tree (Yu et al., 2020). Based on previous study, only 

two machine learning classifiers algorithms were compared which are logistic regression 

and decision tree. There are still no studies comparing three most common machine 

learning classifiers algorithms for aquaculture pond mapping which are, Random Forest 

(RF), Support Vector Machine (SVM), Classification and Regression Tree (CART). 
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3. Materials and Methods 
The study area, Sungai Udang is located in Seberang Perai Selatan district of Penang, 

within latitudes 5°09′ N and longitudes 100°25′ E. It is a Chinese fishery village with 

population of 2045 (as of census 2010) as shown in Figure 1. The area which this study 

was conducted in Sungai Udang is 9.51 km². For secondary datasets, high resolution 

image from Google Earth Pro were used and referred for sampling selection and to obtain 

area of aquaculture pond which is then used to compare with the area obtained from 

classified image using Google Earth Engine. The workflow for this study is shown in 

Figure 2. Primary dataset which is the 10m Sentinel 2 Level-1C orthorectified top-of-

atmosphere reflectance images were obtained directly from Google Earth Engine 

platform. Next, cloud mask band (QA 60) was used to mask cloud in the images followed 

by annual composite function was used to replace the cloud pixels removed. This 

processed was used to obtain images free from cloud from the year 2016 to 2020. Next, 

the image was clipped to the user’s preference of designated study area (shapefile). The 

shapefile of the study area which is a vector data was created using the ArcMap 10.5 

software. The shapefile was uploaded into GEE personal Asset folder. 

 

 

 
Figure 1: Study Area Sungai Udang, Penang 
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Figure 2: Methodological steps conducted for this research 
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This study uses primary datasets and secondary datasets to produce and analyse 

aquaculture pond maps over Sungai Udang, Penang. For primary datasets, 10m Sentinel 

2 data from 2016 to 2020 (7 original bands) which details can be found in Table 1 and 

additional data including NDVI, MNDWI and NDBI which details can be found in Table 

2.  

Samples were created in Google Earth Engine platform where 3 classes were 

identified: vegetation, urban and aquaculture pond. This samples were formed using the 

point option in GEE covering the whole study area by using random sampling.  With the 

help of Google Earth Pro high resolution images, the samples were chosen. Next, the 

selected samples were separated into training and testing. 70% from the whole created 

samples (98 points) were used to classify the Sentinel images and the balance 30% of the 

samples (42 points) were used for validation and accuracy assessment of the machine 

learning classifiers used. Some sample selection biases appeared as this sample selection 

is done manually. 

This study uses a pixel-based supervised classification with 3 most common land 

cover classification machine learning classifiers algorithms which are Random Forest 

(RF), Support Vector Machine (SVM), and Classification and Regression Tree (CART). 

The samples for training were used to train the machine learning classifiers. The 

hyperparameter for RF and SVM was tuned based on trial and error. CART algorithm in 

GEE does not need to be tuned and default hyperparameter will be automatically used. 

For RF, the number of trees selected was 10. For SVM, kernel type was set to RBF, gamma 

was set to 0.5 and cost was set to 10. 

Confusion matrices was used to assess the accuracy of supervised classifiers. The 

testing samples was introduced and allocated to the classifier. The overall accuracy and 

kappa coefficient function were used, and the result was displayed at the console section 

of GEE platform. 

Google Earth Pro was used as secondary dataset due to available high-resolution 

image. Each pond was visually identified, and a polygon was created around it. Next, the 

polygon of the ponds (KMZ) was imported into ArcMap 10.5 to create shapefile and to 

count the area of the aquaculture ponds which is then used to compare with the area 

obtained from classified image.  

 

Table 1: Shows information of Sentinel 2 bands 

Name Description Pixel size (m) Wavelength (µm) 

B2 Blue 10 meters 496.6nm (S2A) / 492.1nm (S2B) 

B3 Green 10 meters 560nm (S2A) / 559nm (S2B) 

B4 Red 10 meters 664.5nm (S2A) / 665nm (S2B) 

B5 Red Edge 1 20 meters 703.9nm (S2A) / 703.8nm (S2B) 

B8 NIR 10 meters 835.1nm (S2A) / 833nm (S2B) 

B9 Water vapor 60 meters 945nm (S2A) / 943.2nm (S2B) 

B11 SWIR 1 20 meters 1613.7nm (S2A) / 1610.4nm (S2B) 
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Table 2: Shows additional layers that were included in classification 

Name Formula Source 

NDVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

(Bannari et al., 1995) 

MNDWI 𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅1

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅1
 

(Xu, 2005) 

NDBI 𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅
 

(Zha et al., 2003) 

 

 

4. Results and Discussion 

 
The goal of this research was to compare SVM, RF and CART machine learning 

classifier algorithms on GEE to create an aquaculture pond map across Sungai Udang, 

Penang. Three different land use classes including aquaculture, urban, and vegetation 

were used in this study. Nevertheless, the classification output analysis focused solely on 

aquaculture ponds because the resulting aquaculture pond map will be utilised to assess 

the spatial distribution of aquaculture pond maps in Sungai Udang, Penang. 

Three types of vegetation were identified in this research, including plantation 

features such as oil palm and paddy fields, woodland, bushes, and other crops. Buildings, 

metals, concrete, and roadways are all classified as urban. Aquaculture ponds that are 

classed as aquaculture. Additional layers such as NDVI, MNDWI, and NDBI were 

included to improve the classification, particularly in differentiating one class from 

another, because the goal of the study was to test the performance of machine learning 

algorithms to retrieve aquaculture pond from 10 m Sentinel 2 images in the GEE platform. 

The aquaculture map from 2016 to 2020 created offers information on the distribution of 

aquaculture ponds, and it may also be utilised in future studies to assess the effect of 

aquaculture land cover in more detail. 

30% of testing samples (vegetation: 15, urban: 6, aquaculture pond: 21) were 

utilised to validate the classified land cover maps, and the overall accuracies and kappa 

coefficient acquired for each classifier and years were calculated as shown in (Table 3). 

The total area of aquaculture pond in Sungai Udang, Penang produced by CART, SVM 

and RF for the year 2016 were 265.24 ha, 256.55 ha and 286.80 ha while for the year 2020 

were 313.20 ha, 314.80 ha and 296.74 ha. SVM produced the highest overall accuracy with 

an average of 97.36% followed by CART with 93.86% and RF 93.48%. The overall 

accuracies produced were calculated via confusion matrix based on the accuracies of the 

3 classified classes.  

By referring to the Google Earth Pro high resolution imagery, the area of 

aquaculture pond produced by SVM, CART and RF were compared for each year. Table 

4 shows the difference of aquaculture pond area produced by SVM, CART and RF by 

comparing the produced results area obtained from Google Earth Pro. However, due to 

narrow river and drainage, RF, CART and SVM have exaggerated the aquaculture pond 

area. The value of overestimation is not high. For example, in the year 2020, RF 
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overestimated 25.61 ha, CART overestimated 24.73 ha and SVM overestimated 8.27 ha. 

This is because the narrow river and drainage have similarity of the reflectance value of 

the pixels. All three algorithm have underestimated but the value is not high too. For 

example, for the year 2019, RF underestimated 4.06 ha, CART underestimated 4.05 and 

SVM underestimated 0.97 ha. Aquaculture pond area increased from the year 2016 to 2020 

for all 3 classifiers. However, for the year 2019 the area decreased. This is due to some 

ponds become inactive. Figure 3 shows classified map for the year 2020 for all 3 classifiers. 

Based on observation there are some misclassification pixels. For example, some urban 

pixels are misclassified in CART and RF.  

  

Table 3: Overall accuracy and Kappa coefficient for land cover class of each classifier 

  2016 2017 2018 2019 2020 

RF Overall 

Accuracy 

(%) 

82.05 97.37 91.84 96.16 100 

 Kappa 

Coefficient 

0.723 0.958 0.861 0.933 1 

CART Overall 

Accuracy 

(%) 

90.48 93.75 95.12 95.65 94.29 

 Kappa 

Coefficient 

0.845 0.891 0.919 0.924 0.905 

SVM Overall 

Accuracy 

(%) 

98.08 97.44 100 97.14 94.12 

 Kappa 

Coefficient 

0.967 0.968 1 0.953 0.905 

 

 

Table 4: Comparison of machine learning classifers in aquaculture ponds mapping. 

 Area (ha)       

Year Google 

Earth Pro 

RF  CART  SVM  

  Classified Variation Classified Variation Classified Variation 

2016 264.42 256.55 -7.87 265.24 0.82 286.80 22.38 

2017 265.22 298.28 33.06 303.42 38.20 293.16 27.94 

2018 284.96 284.81 -0.16 289.68 4.71 275.21 -9.75 

2019 286.84 282.78 -4.06 282.79 -4.05 285.86 -0.97 

2020 288.47 314.08 25.61 313.20 24.73 296.74 8.27 
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Figure 4: Classified map for (a) CART, (b) RF and (c) SVM for the year 2020 

In this study, we used a pixel-based supervised image classification to produce the 

aquaculture pond map. It is a traditional method in classification and easy to implement. 

Unlike pixel-based, object-based is a technique that works through image segmentation. 

Each segmented area or object consists of homogeneous pixels that have been grouped 

together. Several previous studies have used object-based to perform aquaculture pond 

classification. However, the technique used is either complicated or complex to 

implement. It requires time to extract aquaculture pond spatial information. Besides that, 

the object-based approach is suitable for large scale study areas due to the presence of 

complex features with a similar spectral response. However, our study area is small scale, 

and no other features identical to aquaculture pond spectral response is present in the 

(a) (b) 

(c) 
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study area. Even though this technique is simple to be implemented and suitable for small 

scale, the overall accuracy produced for each year and classifiers are considered high, and 

area variation is minimal.   

 

5. Conclusion 
 

Aquaculture pond maps were created using 10 m Sentinel 2 data and sampled annual 

cloud free composite images from 2016, 2017, 2018, 2019, and 2020 in this study. The GEE 

platform was used for all image acquisition, processing, and analysis. GEE is a good 

choice for aquaculture pond mapping because it is simpler and more convenient than the 

traditional method. There are several methods for creating an aquaculture pond map 

based on previous research. However, when compared to other methods used in previous 

studies, the method proposed here is simpler. Users with little experience with geospatial 

analysis can quickly learn and use GEE. 

The images were classified using three popular machine learning classifiers for 

land cover: SVM, CART, and RF. In comparison to CART and RF, SVM produced a more 

accurate classified map based on accuracy assessment. Thus, SVM is the most suitable 

classifier compared to RF and CART to produce aquaculture pond map with the highest 

accuracy. For all years, all three classifiers produced satisfactory overall accuracy of more 

than 90%. There isn't much of a difference between the aquaculture pond area obtained 

from Google Earth Pro and the aquaculture pond area obtained from the classified image. 

In this study, the issue we faced is the distinction arises from the classification of a narrow 

river and its drainage as an aquaculture pond. GEE can perform object based (OBIA) 

classification, which is something that should be investigated further in the future. 

However, in the GEE platform, OBIA classification can be time-consuming and difficult. 

Learning and performing OBIA classification will take more time, but guidance is 

available on the GEE developer's website and other online resources. The Sentinel 1 

dataset, which employs active sensors, is also available in GEE.  

Overall, GEE was successful in achieving all of its goals. The primary goal, which 

is to create an aquaculture pond map, is critical. This is because the map and data can be 

used by a variety of organisations, including the government, non-governmental 

organisations, and aquaculture pond owners, to manage and monitor aquaculture pond 

fish production. In addition, the environment degradation caused by aquaculture ponds 

can be monitored. This research will aid in decision-making and the development of long-

term aquaculture ponds. 
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